Что понимают под точностью обработки партии деталей
Точность обработки
Качество обработки деталей машин определяется двумя критериями: точностью обработки и шероховатостью обработанных поверхностей.
Под точностью обработки понимают степень соответствия изготовленной детали заданным размерам и форме. В большинстве случаев форма деталей определяется комбинацией известных геометрических тел: цилиндрических, конических, плоскостей и т. д. Можно установить следующие основные критерии соответствия детали заданным требованиям:
Отклонения формы и расположения поверхностей
Отклонение формы реальной поверхности от номинальной, т. е. заданной чертежом, оценивается наибольшим расстоянием D между точками реальной поверхности и номинальной, измеренным по нормали к последней. Отклонения формы и расположения поверхностей регламентируются ГОСТом. Наиболее часто встречающиеся из них:
Отклонения от плоскостности:
Отклонения от круглости:
Рисунок 1. Определение величины отклонения формы
Рисунок 2. Отклонения профиля продольного сечения
Рисунок 3. Отклонения расположения
Отклонения расположения характеризуется отклонением реального расположения поверхностей (осей) от их номинального расположения:
Факторы, определяющие точность обработки
В состав погрешности обработки входят:
Погрешность настройки складывается из:
Рисунок 4.
Точность настройки станка и режущего инструмента
При смещении резца на размер а вверх-вниз относительно оси станка (рис. 4) диаметр D заготовки увеличивается.
Биение вращающихся центров станка приводит к биению обрабатываемых поверхностей заготовки относительно оси центральных отверстий. При перестановке обработанной заготовки на другой станок с другим биением центров может возникнуть отклонение от соосности у заготовок, обрабатываемых в разных условиях.
Жёсткость технологической системы
Жёсткостью технологической системы называют отношение радиальной силы резания Py, направленной перпендикулярно обрабатываемой поверхности, к смещению y режущей кромки инструмента относительно обрабатываемой поверхности заготовки в том же направлении:
Под влиянием силы резания возникает упругая деформация элементов технологической системы СПИД (изгиб и сжатие резца, изгиб заготовки и т.п.). Если бы под действием сил резания заготовка и инструмент не деформировались, то обработанная поверхность имела бы форму цилиндра диаметром d (рис.5).
Деформации режущего инструмента, зависящие от величины его вылета из резцедержателя, особенно сказываются при растачивании глубоких отверстий (рис. 8).
Влияние на точность обработки температуры и других факторов
В процессе резания звенья технологической системы нагреваются, что приводит к возникновению температурных погрешностей. Так, вследствие нагрева инструмента удлиняется его режущая часть, что приводит к возникновению погрешности формы и размеров при обработке длинных поверхностей.
Температура нагрева обрабатываемой заготовки зависит от количества теплоты, поступающей в заготовку, которая в свою очередь зависит от массы заготовки, теплоёмкости её материала, режима резания. Чем больше масса заготовки, тем меньше она подвержена температурным деформациям.
При работе станка выделяется теплота из-за трения в узлах и подшипниках, вследствие чего нагреваются детали станка и его механизмы. У токарно-винторезного станка главным образом нагревается передняя бабка. Задняя бабка, суппорт и станина нагреваются незначительно. Ввиду больших масс частей станка происходят медленные температурные деформации, которые незначительно влияют на точность обработки.
Большое влияние на точность обработки оказывает размерный износ режущего инструмента в направлении нормали к обрабатываемой поверхности. Величина износа зависит от пути, пройденного резцом за период его стойкости, т.е. пути резания:
[м], где
скорость резания, м/мин.
Характеристикой интенсивности размерного износа является относительный износ (мкм), т.е. размерный износ приходящийся на 1000 м пути резания:
Рисунок 9.
Рисунок 10.
Тогда размерный износ может быть определён по формуле:
Точность обработки деталей на станках: определение понятия, характеристики отклонений от заданных параметров
Любое производство всегда должно соответствовать определенным параметрам. И одно из них – это точность обработки деталей. От этого аспекта зависит сразу множество факторов. Эксплуатационный срок продукции, возможность осуществления замены, темпы и эффективность финальной сборки машинным методом. Без соответствия нормам обеспечить процесс бесперебойного производства просто невозможно. Ведь при темпах выпуска готовых агрегатов детали проходят через машину даже не за минуты, а за секунды. И любое изменение станет критичным, особенно если для установки метиза придется его дополнительно подгонять слесарным методом.
Понятие о точности обработки
Под этим термином принято подразумевать соответствие детали установленным чертежом параметром. Этот аспект касается формы, размеров, корректности взаимного расположения частей, состоянию поверхности (уровень шероховатости или ее полное отсутствие).
Добиться 100% соответствия на самом деле не представляется возможным. Всегда будут наличествовать отступления в некоторой степени. Поэтому важным параметром становится допуск. В одной партии деталей он возможен до сотых миллиметра, в другой — до десятых долей Мкм.
Соответственно, необходимо уместиться в заданный диапазон. И это становится возможным при сочетании высококачественного оборудования и квалифицированных специалистов, осуществляющих работу. Ведь некоторые станки просто изначально имеют погрешность, которая не позволит подогнать метиз под параметры допуска. Только при случайном результате. В итоге чем жестче становятся требования, тем более дорогостоящим становится производство. И материалы, и само оборудование, используемые в процессе, будут дороже. Не говоря уже про оплату труда высококвалифицированных кадров. Величина отклонений показывает тот факт, насколько высокие требования к взаимозаменяемости. Чем они выше, тем точнее придется подгонять детали. И уровень квалитета вырастает соответственно. Чтобы приобрести необходимое техническое обеспечение с высокими качественными показателями, обращайтесь в нашу компанию «Сармат». Мы предоставляем широкую линейку станков металлообрабатывающего оборудования.
Так в различных отраслях для эффективности существуют нормативы, на которые необходимо ориентироваться. Это ГОСТы, в частности, для этого аспекта характерен документ 7713-55.
Допуск изначально указывается в самом чертеже, он обозначается знаком плюса или минуса. Что показывает, в какую именно сторону допустимо выйти за грани значений, указанных схемой. Посмотрим на примере. Длина деревянного бруска в документации указывается, как 20-0.4мм. В этом случае мы понимаем, что заданный размер – 20 миллиметров, но если ошибка будет в меньшую сторону на 0.4, то деталь все равно будет в зоне допуска. То есть, 19.6 мм – это нормально. Также при размерах, указанных как 30+0.3мм, мы можем отклониться на определенный отрезок от примера. Выточить брусок длиной 3.3мм. Но любое отступление свыше этого параметра – будет уже серьезным нарушением, что спровоцирует повторную работу.
Так, мы можем выявить, что такое точность обработки — определение звучит, как соответствие в определенном диапазоне квалитета параметрам размера, геометрической формы, структуры поверхности, расположения составных частей по отношению друг к другу у готовой детали и чертежа. И основной целью всего этого понятия мы назвали возможность осуществления автоматического производства и сборки. И чем корректнее получилось изделия, тем в более скоростных процессах дальнейшего производства оно способно принять участие. Степень соответствия – прямой показатель качества. Наличие необходимости механической доработки любым методом – это серьезная ошибка, нарушение в процессе изготовления. А если погрешность станка для указанного уровня квалитета вполне укладывается в диапазон, значит, неточность стала следствием человеческого фактора. То есть, банальной халатности или некомпетентности оператора.
Характеристика точности обработки
Разберемся в базовых терминах, которые характеризуют понятие. Первый из них – это номинальный размер. Это параметр длины, ширины, высоты указанный в начальной документации. На схеме, по которой идет производство. Он обычно заявляется с отступлениями, но они не считаются его частью. Так, при значениях в 35-05мм номинальным размером будет только первое. Соответственно, 25 миллиметров.
А вот действительным уже называют размер, полученный после процесса производства. Он выявляется с помощью измерения получившегося метиза. И для выяснения необходимости дальнейшей доработки, нужно обращаться к еще одному понятию — предельный размер. Он уже указывается, как номинальное значение с отклонением. В нашем примере – это 34.5 мм. В большую сторону, 35.5 мм. Диапазон между этими параметрами считается допуском.
Взаимозаменяемость деталей
При современных темпах производства на сбор конструкций отводятся максимально урезанные сроки. Машины работают в активном ритме. Это характерно для сбора велосипедных, мотоконструкций, машиностроения, двигателей и во множестве иных областей. И для проведения подобных процессов нужно огромное внимание уделить тому, подходят ли метизы по уровню квалитета. В противном случае это скажется на скорости. Останавливать производственный процесс для подгонки изделий никому не захочется.
И по итогу, точность обработки детали – это:
Также этот аспект исключительно важен в вопросах ремонта. Ведь взаимозаменяемость тут тоже становится центральным фактором. Если сломанную деталь невозможно заменить на новую без подгонки, значит:
Сопряжение
Еще один важный аспект. Точность обработки поверхностей детали демонстрирует свою важность как раз в сопрягаемых элементах — тех, что соприкасаются друг с другом поверхностями на определенной площади. Помимо того, что они обязаны быть взаимозаменяемыми, стоит понимать, что сопряжение требует идеально подобранной поверхности. В противном случае появится повышенное трение, неучтенный расход энергии, ведь метизы будут тормозить ход. А также сильно пострадает эксплуатационный срок. При интенсивной работе особенно. В этом ракурсе срок службе может быть снижен в десятки раз. Что опять же, ударит по экономике предприятия.
Как видно, практически все изменения в первую очередь наносят урон экономической составляющей. Корректное соблюдение параметров – это отличный способ сократить издержки. Да и стоит понимать, что сильные отклонения – это шанс получить санкции от контролирующих органов, в частности, Роспотребнадзора. Ведь полученная продукция не будет соответствовать заявленной по начальной сделке. А это скажется в форме нарушений прав конечного потребителя.
Зазоры и натяги
При наличии широких диапазонов допуска, это вполне расхожая ситуация. В принципе понятие точности обработки деталей тесно связано с ними.
Чтобы понять, что это такое, представим брусок из металла или дерева с размерами в 30-02мм. И он должен быть помещен в паз, предназначенный для него. Но габариты этого слота следующие – 30-0.2+0.2мм. Что получится после того, как мы поместим туда брусок? В лучшем случае их характеристики будут идеально соответствовать. Тогда это не наш случай. Гораздо чаще возникает ситуация, когда брусок окажется меньше, чем паз. Теоретически он слот может оказаться больше на 0.4мм. А значит, объект будет вполне свободно двигаться. Его допустимо прижать к одной или другой стороне. Такая постановка как раз и называется свободной.
Но вполне часто появляется и обратная ситуация. Собственно, если слот окажется меньше, чем брусок. Опять же игра с допустимыми габаритами. И заметьте, все в пределах ГОСТа и квалитета чертежа. Вставить объект напрямую не получится, он слишком большой. Придется забивать его, заталкивать, прессовать. Суть в том, что зазор будет отрицательным.
Обе ситуация не несут положительного эффекта. Но это тот минус, с наличием которого придется смириться. И чем выше диапазоны допускаемых значений, тем сильнее будут натяги и зазоры. Получается этакий баланс. Чем лучше подогнаны метизы, чем меньше проблемы со сбором. Но дороже само производство, станки, сотрудники. А если удешевить работу, то переплатить придется в правке зазоров и натягов. Исходя из этого и дается определение понятию точность обработки. Получается, своего рода и некий механизм, позволяющий найти баланс между экономическими затратами и получаемой выгодой.
Посадка изделий
Это способ соединения метизов. Он характеризуется как наличием свободы движения, так и ее отсутствием. Все зависит от того, насколько габариты двух составных частей соответствуют друг другу. Обычно подразумевается один метиз, который помещается в паз или слот.
Посмотрим, как у нас будет меняться посадка, если изначальные размеры не соответствуют объектам. То есть, появляется зазор или натяг. И каким образом это может сказать на дальнейшем процессе сбора.
Посадка с зазором
В части случаев это строго необходимое требование. Как вариант, шпиндель на подшипниках во фрезерном станке. Тут зазор положен по регламенту. Но небольшой. А вот при размещении колец на отправке в том же агрегате, положен серьезная свобода. И если поменять их местами, то шпиндель не сможет нормально работать на скорости. А кольца не дадут ход, слишком туго затянувшись.
Получается, что, отклоняясь от норм зазора, проблемы становятся еще неприятнее, чем при обычном выходе метиза за пределы допуска.
Посадка с натягом
Обратная ситуация. Тут значение расхождений не так важно, при работе ощущается гораздо менее явно. Но есть свой нюанс. Ведь если натяг в итоге получится слишком крупным, то поместить изделие в паз будет невозможно. Подогнать пару десятых миллиметра – это вполне реализуемо даже без специальных приспособлений. А вот справиться с расхождением в 0.7-1 мм, просто нереально. Придется заново снимать стружку, иначе оба объекта при прессовке деформируются или треснут. Зависит от материала, который был задействован при их создании.
Точность обрабатываемых деталей по классам
Мы уже поняли, насколько важно, чтобы вышедшее из-под станка изделие соответствовало параметрам, заявленным чертежом. Но эта значимость в различных случаях отличается. Легко понять, что черенок от граблей не обязан быть подходящим по размеру под стальную часть до сотой Мкм. И при этом составляющие станка должны быть очень точно подобраны, не выходить за размерные рамки. А ювелирные весы имеют и еще более высокие требования. Все подстраивается под конечную цель финального прибора. И в зависимости от этого фактора, принято выявлять классы. И их сейчас по современным регламентам ровной десять штук. И к высокоточным относится ровно половина — с первого по пятый. К диапазону среднего уровня принадлежат шестой и седьмой класс. А оставшиеся три считаются неточными.
Перед установкой настроек для работы важно не только обращать внимание на схему, точные значения, но и класс. Хотя этот фактор зачастую учитывается при формировании чертежа. Но уточнить на всякий случай все же стоит. То есть, получается новый алгоритм, как определить точность обработки детали на станке. Не только указанные диапазоны изменений в чертеже имеют значение, но и характеристика по классу.
Применение по областям
Указанные выше группы используются повсеместно. Сейчас чуть меньше, ведь появились и иные ориентиры. А вот еще 25-30 лет назад это были главные факторы, на которые все ориентировались при определении отклонений.
Посмотрим, где сейчас используются классы:
Причины неточностей
Мы уже частично упоминали эти факторы. Но давайте скомпилируем полученные знания. Неточность зачастую возникает:
Таблица допусков
При работе с деревом обычно заявленные требования становятся ниже, чем для стали. Ведь этот материал подразумевает наличие различных неровностей после процедур, шероховатостей, деформаций по годовым кольцам или возможных микротрещин. Диапазоны у них более щадящие. Да и доработка проводится легче. При этом существует определенный запас для натяга. Деформация древесных волокон происходит проще, чем стальных элементов.
В данной таблице приведены значения исключительно для древесного материала, шпона, массива. Для финальной сверки используются различные измерительные инструменты. Линейки, штангенциркули и обычные метры.
ТОЧНОСТЬ ОБРАБОТКИ
Под точностью обработки понимают степень соответствия обработанной детали техническим требованиям чертежа в отношении точности размеров, формы и расположения поверхностей. Все детали, у которых отклонения показателей точности лежат в пределах установленных допусков, пригодны для работы.
В единичном и мелкосерийном производстве точность деталей получают методом пробных рабочих ходов, т.е. последовательным снятием слоя припуска, сопровождаемым соответствующими измерениями. В условиях мелко- и среднесерийного производств применяют обработку с настройкой станка по первой пробной детали партии или эталонной детали. В крупносерийном и массовом производствах точность детали обеспечивают методом автоматического получения размеров на предварительно настроенных станках-автоматах, полуавтоматах или автоматических линиях.
На станках, выполняющих обработку за несколько рабочих ходов (например, на круглошлифовальных), применяют устройства активного контроля, которые измеряют размер детали в процессе обработки. При достижении заданного размера устройства автоматически отключают подачу инструмента. Применение этих устройств повышает точность и производительность обработки путем уменьшения времени на вспомогательные операции. Эта цель достигается также путем оснащения металлорежущих станков системами адаптивного управления процессом обработки. Система состоит из датчиков для получения информации о ходе обработки и регулирующих устройств, вносящих в нее поправки.
На точность обработки влияют: погрешности станка и его износ; погрешность изготовления инструментов, приспособлений и их износ; погрешность установки заготовки на станке; погрешности, возникающие при установке инструментов и их настройке на заданный размер; деформации технологической системы, возникающие под действием сил резания; температурные деформации технологической системы; деформация заготовки под действием собственной массы, сил зажима и перераспределения внутренних напряжений; погрешности измерения, которые обусловлены неточностью средств измерения, их износом и деформациями и др. Эти факторы непрерывно изменяются в процессе обработки, вследствие чего появляются погрешности обработки.
Собственная точность станков (в ненагруженном состоянии) регламентирована государственными стандартами для всех типов станков. При эксплуатации происходит изнашивание станка, в результате которого его собственная точность снижается.
Режущий инструмент имеет погрешности размеров, формы и взаимного расположения элементов, полученных при его изготовлении. Эти погрешности предопределяют погрешности обработки. Износ инструмента влияет на точность обработки в партии заготовок при одной настройке станка (например, при растачивании отверстий износ резца приводит к появлению конусообразности).
В отливках и кованых заготовках в результате неравномерного остывания возникают внутренние напряжения. При резании вследствие снятия верхних слоев материала заготовки происходят перераспределение внутренних напряжений и ее деформация. Для уменьшения напряжений отливки подвергают естественному или искусственному старению. Внутренние напряжения появляются в заготовке при термической обработке, холодной правке и сварке.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Понятие о точности обработки на металлорежущих станках
Любое производство всегда должно соответствовать определенным параметрам. И одно из них – это точность обработки деталей. От этого аспекта зависит сразу множество факторов. Эксплуатационный срок продукции, возможность осуществления замены, темпы и эффективность финальной сборки машинным методом. Без соответствия нормам обеспечить процесс бесперебойного производства просто невозможно. Ведь при темпах выпуска готовых агрегатов детали проходят через машину даже не за минуты, а за секунды. И любое изменение станет критичным, особенно если для установки метиза придется его дополнительно подгонять слесарным методом.
Понятие о точности обработки
Под этим термином принято подразумевать соответствие детали установленным чертежом параметром. Этот аспект касается формы, размеров, корректности взаимного расположения частей, состоянию поверхности (уровень шероховатости или ее полное отсутствие).
Добиться 100% соответствия на самом деле не представляется возможным. Всегда будут наличествовать отступления в некоторой степени. Поэтому важным параметром становится допуск. В одной партии деталей он возможен до сотых миллиметра, в другой — до десятых долей Мкм.
Так в различных отраслях для эффективности существуют нормативы, на которые необходимо ориентироваться. Это ГОСТы, в частности, для этого аспекта характерен документ 7713-55.
Допуск изначально указывается в самом чертеже, он обозначается знаком плюса или минуса. Что показывает, в какую именно сторону допустимо выйти за грани значений, указанных схемой. Посмотрим на примере. Длина деревянного бруска в документации указывается, как 20-0.4мм. В этом случае мы понимаем, что заданный размер – 20 миллиметров, но если ошибка будет в меньшую сторону на 0.4, то деталь все равно будет в зоне допуска. То есть, 19.6 мм – это нормально. Также при размерах, указанных как 30+0.3мм, мы можем отклониться на определенный отрезок от примера. Выточить брусок длиной 3.3мм. Но любое отступление свыше этого параметра – будет уже серьезным нарушением, что спровоцирует повторную работу.
Так, мы можем выявить, что такое точность обработки — определение звучит, как соответствие в определенном диапазоне квалитета параметрам размера, геометрической формы, структуры поверхности, расположения составных частей по отношению друг к другу у готовой детали и чертежа. И основной целью всего этого понятия мы назвали возможность осуществления автоматического производства и сборки. И чем корректнее получилось изделия, тем в более скоростных процессах дальнейшего производства оно способно принять участие. Степень соответствия – прямой показатель качества. Наличие необходимости механической доработки любым методом – это серьезная ошибка, нарушение в процессе изготовления. А если погрешность станка для указанного уровня квалитета вполне укладывается в диапазон, значит, неточность стала следствием человеческого фактора. То есть, банальной халатности или некомпетентности оператора.
Теория: Точность обработки на токарных станках
Небольшой цикл статей по теории точности обработки на токарных. Написано понятным языком, много поясняющих примеров и картинок. Полезно один раз вдумчиво прочитать.
ТОЧНОСТЬ ОБРАБОТКИ НА ТОКАРНЫХ СТАНКАХ
В связи с повышением рабочих параметров современных машин (скоростей, давлений, температур и т. д.) непрерывно повышаются и требования к точности механической обработки отдельных деталей.
Рассчитывая и проектируя детали машин, конструктор придает им определенные формы и размеры, отвечающие наилучшим эксплуатационным свойствам, наибольшей долговечности и надежности. Однако в процессе изготовления на металлорежущих станках не представляется возможным получить абсолютно точные детали. Возникают погрешности в размерах, форме поверхностей и их взаимном расположении.
Чем меньше эти погрешности, тем выше эксплуатационные качества деталей, но тем сложнее и дороже их изготовление. Общей задачей, стоящей перед машиностроительной промышленностью, является получение возможно более высокой точности изготовляемых деталей при минимальной их стоимости.
Для того чтобы погрешности изготовления находились в допустимых пределах (исходя из необходимых эксплуатационных свойств деталей и соединений), на размеры и форму деталей устанавливаются допуски, которые ограничивают допустимые отклонения (погрешности) от установленных размеров и форм.
Погрешности формы поверхностей могут быть самыми разнообразными: нецилиндричность, некруглость, овальность, огранка, отклонения профиля продольного сечения, конусообразность, бочкообразность, седлообразность, изогнутость (рис. 1 и 2). Погрешности формы часто оказывают большее влияние на долговечность и надежность деталей машин, чем погрешности размеров.
Отклонения формы определяются допусками по ГОСТу 10356—63. Если на чертеже нет специальных указаний, то погрешность формы допускается в пределах поля допуска на размер.
Рис. 1. Погрешности формы поперечного сечения: а — неци-линдричность; б — некруглость; в — огранка
Рис. 2. Погрешности формы в продольном сечении;
а — конусообразность; б — бочкообразность; в — седлообразность
Точность взаимного расположения поверхностей: параллельность, перпендикулярность, соосность, биение и т. д. — также указывается в виде допусков и отклонений. К обработке на токарных станках прибегают как к окончательной или как к предварительной перед шлифованием. И в том, и в другом случае требуется достаточно высокая точность.
Нормальной точностью изготовления на токарных станках обычно считают точность 4—3-го класса. Однако при необходимости и благоприятных условиях можно получить 2 и даже 1-й класс точности, но стоимость обработки будет высокой. Точная обработка на токарном станке возможна только на исправном оборудовании и при высокой квалификации исполнителя.
При изготовлении точных деталей всегда необходимо отчетливо представлять причины возникновения неточностей (погрешностей) обработки. Зная эти причины, можно найти и методы их уменьшения и тем самым повысить точность.
Советскими учеными проведен ряд исследований в области точности механической обработки, в результате которых вскрыты причины появления отдельных погрешностей, найдены факторы, влияющие на эти погрешности, и намечены пути повышения точности механической обработки.
Физическая сущность явлений, имеющих место при механической обработке, сложна, а поэтому и возникающие при этом погрешности многообразны.
Погрешности обработки возникают: из-за неточности оборудования и инструмента, от упругих деформаций узлов станка, обрабатываемой детали инструмента, от износа инструмента, от температурных деформаций, от неточности установки и настройки и пр.
Для изучения этих погрешностей обычно используются теоретические расчеты, результаты экспериментальных исследований и богатый опыт нашего отечественного машиностроения.
В настоящей главе рассматриваются только вопросы точности механической обработки при чистовом точении твердосплавными инструментами. Вопросы качества обработанной поверхности и вибраций рассматриваются в следующих статьях.
Если на токарном станке обточить вал большого диаметра и большой длины и затем тщательно его промерить, то обнаружится, что уже в самой начальной стадии ее изготовления деталь имеет какое-то отступление от заданного размера. Мало того, в поперечных сечениях по длине детали размеры будут разными. Вал окажется нецилин-дричным. Эти отступления от заданного размера и правильной цилиндрической формы вызваны влиянием погрешностей обработки.
Если партию малогабаритных деталей (например, валиков или втулок) обточить заранее установленным на размер резцом (станок настроен на обтачивание одной поверхности у всей партии деталей) и затем все детали тщательно измерить, то обнаружится, что размеры всех деталей партии разные. Кроме того, диаметральные размеры каждой детали по длине обработки, например в начале и в конце, также будут разными. Это различие в размерах, равно как и погрешности формы, объясняются влиянием первичных погрешностей, возникающих при механической обработке.
Рис, 3. Диаграмма отклонений размеров колец, последовательно обточенных по наружной поверхности (точечная диаграмма)
На рис. 3 представлена кривая изменения размеров партии деталей, обработанных на токарном станке. На станке с высотой центров 380 мм установленным резцом обтачивались кольца из стали 35ХМ (НВ 320) диаметром 204 мм и шириной 60 мм. Резец сечением 20х30 мм был оснащен пластинкой твердого сплава Т15К6.
На диаграмме по горизонтальной оси отложены порядковые номера обработанных деталей. По вертикальной оси —- отклонения обточенных деталей от настроечного размера (в мкм), т. е. наружного диаметра, равного 204 мм. Здесь точки на кривой а соответствуют размерам отдельных деталей в начале их обработки, а точки на кривой в — размерам в конце обработки. Ломаные линии а и б получены путем соединения опытных точек.
Рассматривая эти кривые, можно сделать несколько общих выводов:
1) начальный размер первой изготовленной детали не совпадает с желательным настроечным размером;
2) начальный и конечный размеры деталей не равны, т. е. все детали имеют такую-то погрешность формы; эта погрешность формы (разность диаметров) более или менее одинакова у всех обработанных деталей (20—30 мкм);
3) изменение размеров деталей по мере увеличения их порядкового номера, т. е. по мере увеличения длительности процесса обработки всей партии деталей, подчиняется определенной закономерности. Для более четкого выяснения этой закономерности проведена кривая б, которая является сглаженной кривой средних размеров отдельных деталей. Рассматривая эту кривую, мы можем отметить общую закономерность: в начале обработки партии деталей, приблизительно до 7—9-й детали, их средний размер (наружный диаметр) уменьшается, а затем до последней 22-й детали партии средний размер все время увеличивается;
4) обе основные линии как а, так и б не являются плавными кривыми, а представляют собой ломаные линии, что указывает на рассеяние размеров отдельных деталей, т. е. на наличие случайных погрешностей обработки.
Кривые на рис. 3 дают ясное представление о наличии сложных зависимостей точности механической обработки деталей от факторов технологического процесса. Часть этих факторов носит случайный характер, не подчиняясь видимым закономерностям, другая же часть оказывает влияние на точность механической обработки в совершенно определенном направлении и в определенной строгой закономерности (систематические погрешности изготовления).
В процессе механической обработки детали или партии деталей отдельные погрешности изготовления оказывают, каждая по своему, влияние на точность изготовления. В итоге общего совместного действия этих погрешностей (суммирования погрешностей) получается искажение формы и размеров окончательно изготовленной детали.
Действуя одновременно, погрешности изготовления частично компенсируют друг друга.
Чтобы иметь ясное представление о том, что же получается с размером и формой обрабатываемой детали при одновременном действии всех погрешностей, необходимо их просуммировать, но для этого нужно знать их величину и от чего, т. е. от каких условий технологического процесса, зависят эти погрешности.
При обработке детали на станке, в частности на токарном станке, мы имеем дело с технологической системой, т. е. с системой станок—деталь—инструмент. Очевидно, что погрешности обработки зависят от начального положения этой системы (от настройки) и от изменения всех звеньев системы в процессе обработки. Как начальная установка системы, так и ее изменения в процессе обработки могут зависеть от исполнителя работы, но могут от него и не зависеть. Во всяком случае, зная характер этих изменений, в процессе обработки исполнитель, как правило, может на них воздействовать в целях уменьшения отдельных погрешностей изготовления.
Если заранее знать закономерности изменения размеров деталей, то, очевидно, можно предвидеть и момент предельно допустимого нарастания размеров, т. е. момент необходимой поднастройки станка. Благодаря этому значительно упрощается наблюдение за технологическим процессом и отпадают или, во всяком случае, значительно упрощаются контрольные операции. При таких условиях как настройку, так и поднастройку станков можно производить более определенно и по заранее составленной программе технологического процесса. Технолог, мастер или настройщик будут действовать не «вслепую» (основываясь только на данных измерения отдельных деталей), а на основе соответствующего технологического расчета. Особо большое значение такие расчеты приобретают в условиях автоматизированного производства.
Расчеты точности изготовления дают возможность предвидеть течение всего технологического процесса. В настоящей главе рассмотрены основные погрешности изготовления, связанные с работой станка, инструмента и обрабатываемой деталью.
Приводимые ниже цифры и закономерности основываются на большом количестве экспериментального материала, но все же их не следует рассматривать как нормативные; в каждом частном случае, в зависимости от условий выполнения технологического процесса, они могут изменяться.
Характеристика точности обработки
Разберемся в базовых терминах, которые характеризуют понятие. Первый из них – это номинальный размер. Это параметр длины, ширины, высоты указанный в начальной документации. На схеме, по которой идет производство. Он обычно заявляется с отступлениями, но они не считаются его частью. Так, при значениях в 35-05мм номинальным размером будет только первое. Соответственно, 25 миллиметров.
А вот действительным уже называют размер, полученный после процесса производства. Он выявляется с помощью измерения получившегося метиза. И для выяснения необходимости дальнейшей доработки, нужно обращаться к еще одному понятию — предельный размер. Он уже указывается, как номинальное значение с отклонением. В нашем примере – это 34.5 мм. В большую сторону, 35.5 мм. Диапазон между этими параметрами считается допуском.
Но допустимые изменения также могут быть верхними и нижними. Разность между предельными и номинальным размером определяется в большую сторону либо в меньшую, исходя из вектора предела. Так, при 35-05мм у нас 35 – 34.5 = 0.5, получается положительный знак, верхний предел. А при 35+0.5 мм, выходит 35 – 35.5 = — 0.5, наблюдается нижний.
Отклонения
Разность между каким-либо предельным размером и номинальным размером называется отклонением.
Верхним отклонением называется разность между наибольшим предельным размером и номинальным размером.
Нижним отклонением называется разность между наименьшим размером и номинальным размером (ОСТ 1001).
В приведённом примере, на странице допусков, верхнее отклонение будет равно
65,030-65=0,030 мм, нижнее отклонение будет равно 65,000—65=0.
Взаимозаменяемость деталей
При современных темпах производства на сбор конструкций отводятся максимально урезанные сроки. Машины работают в активном ритме. Это характерно для сбора велосипедных, мотоконструкций, машиностроения, двигателей и во множестве иных областей. И для проведения подобных процессов нужно огромное внимание уделить тому, подходят ли метизы по уровню квалитета. В противном случае это скажется на скорости. Останавливать производственный процесс для подгонки изделий никому не захочется.
И по итогу, точность обработки детали – это:
Также этот аспект исключительно важен в вопросах ремонта. Ведь взаимозаменяемость тут тоже становится центральным фактором. Если сломанную деталь невозможно заменить на новую без подгонки, значит:
Сопряжение
Еще один важный аспект. Точность обработки поверхностей детали демонстрирует свою важность как раз в сопрягаемых элементах — тех, что соприкасаются друг с другом поверхностями на определенной площади. Помимо того, что они обязаны быть взаимозаменяемыми, стоит понимать, что сопряжение требует идеально подобранной поверхности. В противном случае появится повышенное трение, неучтенный расход энергии, ведь метизы будут тормозить ход. А также сильно пострадает эксплуатационный срок. При интенсивной работе особенно. В этом ракурсе срок службе может быть снижен в десятки раз. Что опять же, ударит по экономике предприятия.
Как видно, практически все изменения в первую очередь наносят урон экономической составляющей. Корректное соблюдение параметров – это отличный способ сократить издержки. Да и стоит понимать, что сильные отклонения – это шанс получить санкции от контролирующих органов, в частности, Роспотребнадзора. Ведь полученная продукция не будет соответствовать заявленной по начальной сделке. А это скажется в форме нарушений прав конечного потребителя.
Точность в машиностроении, методы достижения точности
Точностью изделия в машиностроении называют степень соответствия заранее установленному образцу. Под точностью детали понимается степень соответствия реальной детали, полученной механической обработкой заготовки, по отношению к детали, заданной чертежом и техническими условиями на изготовление, т.е. соответствие формы, размеров, взаимного расположения обработанных поверхностей, шероховатости поверхности обработанной детали требованиям чертежа.
Следовательно, точность понятие комплексное, включающее всестороннюю оценку соответствия реальной детали по отношению к заданной.
При работе на металлорежущих станках применяют следующие методы достижения заданной точности:
Но какой бы станок или способ обработки не применялся, несколько деталей, даже обработанных на одном и том же станке одним и тем же инструментом, будут немного отличаться друг от друга. Это объясняется появлением неизбежных погрешностей обработки, которые служат мерой точности обработанной детали.
Таким образом, к причинам, вызывающим появление погрешностей при обработке резанием, будь-то токарная обработка, сверление или фрезерование, можно отнести следующие:
При эксплуатации инструмента по мере его изнашивания наступает такой момент, когда дальнейшее резание инструментом должно быть прекращено, а инструмент отправлен на переточку. Момент затупления инструмента устанавливается в соответствие критериями износа, под которым понимается сумма признаков или один решающий признак. Применяется два критерия: первый — критерий оптимального износа и второй- критерий технологического износа. В обоих критериях за основу принимается линейный износ задней поверхности, так как она изнашивается всегда при обработке любых материалов и при всех режимах резания, и измерение ширины площадки износа гораздо проще, чем глубины лунки износа.
Качество поверхности, обработанной режущими инструментами, определяется шероховатостью и физическими свойствами поверхностного слоя. Обработкой резанием не может быть получена идеально ровная поверхность. Режущие кромки инструментов оставляют неровности в виде впадин и выступов различной формы и размеров.
Поверхностный слой после обработки резанием существенно отличается от основной массы металла, так как под действием инструмента его твердость и кристаллическое строение изменяются. Толщина дефектного поверхностного слоя зависит от материала заготовки, вида и режима обработки и др. От качества поверхности зависят следующие эксплуатационные характеристики деталей: износостойкость поверхностей трущихся пар, характер посадок подвижных и неподвижных соединений, усталостная или циклическая прочность при переменной нагрузке, противокоррозионная стойкость поверхности и др.
Таким образом, даже этот краткий материал по обработке металлов резанием ясно показывает, что на качество обработанной поверхности влияет много факторов: материал обрабатываемой заготовки, вид обработки, жесткость системы станок — приспособление — инструмент деталь, характер, форма, материал и степень остроты или износа режущих инструментов, режим обработки, вид смазочно-охлаждающей жидкости (СОЖ), а также квалификация рабочего человека, стоящего у станка, его отношение к делу.
Оптимизация всех факторов, влияющих на качество обработки, обеспечит стабильность получения желаемого результата: качества изделия в конечном итоге, что принесет любому предприятию прибыль и вознаграждение за свой труд, а потребителю экономию за счет снижения эксплуатационных издержек при техобслуживании и ремонте машин.
Зазоры и натяги
При наличии широких диапазонов допуска, это вполне расхожая ситуация. В принципе понятие точности обработки деталей тесно связано с ними.
Чтобы понять, что это такое, представим брусок из металла или дерева с размерами в 30-02мм. И он должен быть помещен в паз, предназначенный для него. Но габариты этого слота следующие – 30-0.2+0.2мм. Что получится после того, как мы поместим туда брусок? В лучшем случае их характеристики будут идеально соответствовать. Тогда это не наш случай. Гораздо чаще возникает ситуация, когда брусок окажется меньше, чем паз. Теоретически он слот может оказаться больше на 0.4мм. А значит, объект будет вполне свободно двигаться. Его допустимо прижать к одной или другой стороне. Такая постановка как раз и называется свободной.
Но вполне часто появляется и обратная ситуация. Собственно, если слот окажется меньше, чем брусок. Опять же игра с допустимыми габаритами. И заметьте, все в пределах ГОСТа и квалитета чертежа. Вставить объект напрямую не получится, он слишком большой. Придется забивать его, заталкивать, прессовать. Суть в том, что зазор будет отрицательным.
Обе ситуация не несут положительного эффекта. Но это тот минус, с наличием которого придется смириться. И чем выше диапазоны допускаемых значений, тем сильнее будут натяги и зазоры. Получается этакий баланс. Чем лучше подогнаны метизы, чем меньше проблемы со сбором. Но дороже само производство, станки, сотрудники. А если удешевить работу, то переплатить придется в правке зазоров и натягов. Исходя из этого и дается определение понятию точность обработки. Получается, своего рода и некий механизм, позволяющий найти баланс между экономическими затратами и получаемой выгодой.
Точность изготовления и чистота поверхности деталей
Под точностью изготовления в машиностроении понимают степень соответствия действительных размеров детали расчетным (номинальным) размерам, заданным по чертежу. Повышение точности изготовления деталей удорожает обработку, снижает производительность станка и т. д.
1- й класс—тонким шлифованием, тонким полированием, притиркой и доводкой; применяют в приборостроении, точном станкостроении, при изготовлении деталей шарикоподшипников и т. д.;
2- й и 2а класс — чистовым шлифованием, алмазным точением, чистовым протягиванием и развертыванием; применяют в точном машиностроении, станкостроении, при изготовлении автомобильных и авиационных двигателей, электромоторов, пневматических и других машин;
3- й и За класс — чистовым шлифованием и точением, тонким фрезерованием и строганием; применяют в общем машиностроении, автотракторостроении, вагоностроении, дизелестроении, при производстве паровых машин и турбин;
4- й класс — чистовым точением, строганием, фрезерованием, сверлением и зенкерованием; используют в тепловозостроении, машиностроении:
5- й класс — получистовым точением, строганием, фрезерованием и сверлением; применяют в машиностроении при отсутствии высоких требований к парным деталям;
7. 8 и 9-й классы — литьем, ковкой и прокаткой, грубой обдиркой на станках; применяют для свободных размеров деталей или заготовок с соответствующими припусками на последующую чистовую обработку на станках.
Степень точности измерений зависит от точнссіи и чувствительности измерительного инструмента, принятого метода измерения и квалификации рабочего. Опытным путем установлено, что наибольшая пена деления измерительного инструмента должна быть примерно втри раза меньше допуска. Так, при шлифовании вала с допуском 0,03 мм наибольшая цена деления инструмента должна бьпь не более 0,01 мм; в этом случае обычно пользуются микрометром.
На точность измерения сильно влияют температура детали и давление на нее измерительного инструмента. Все измерения следует проводить при одинаковой температуре и одинаковом давлении инст румента. Некоторые инструменты имеют специальные устройства,
-ограничивающие давление на деталь (например, трещотка у микрометра).
Чистота поверхности. На поверхности деталей инструмент оставляет неровности в виде владин и гребней, которые после черновой обработки видны невооруженным глазом, а после чистовой —- при увеличении под микроскопом. Гребни и впадины назвівают микро- неровностями поверхности деталі! или шероховатостью, характеризующей чистоту поверхности.
Чистота поверхности зависит от свойств обрабатываемого металла, инструмента, режима резания, применяемых смазочно-охлаждающих жидкостей, способа и вида обработки.
По ГОСТ 2789—73 шероховатость поверхности представляет собой совокупность неровностей, образующих рельеф поверхности детали в пределах рассматриваемого участка, длину которого, равную базовой длине, выбирают в зависимости от характера поверхности. Для характеристики шероховатости поверхности установлены следующие понятия.
Геометрическая поверхность — расчетная поверхность 1 тела заданной геометрической формы, не имеющая неровностей и отклонений от плоской или иной формы, обозначенной на чертеже (рис. 188, о).
Реальная поверхность — фактическая поверхности, которая ограничивает тело и отделяет его от окружающей среды.
Неровности — выступы и впадины на реальной поверхности.
Измеренная поверхность ■— поверхность, воспроизведенная в ре
зультате измерения реальной поверхности с учетом ее выступов 2 и впадин 4 (рис. 188, а).
Геаметрический профиль — сечение геометрической поверхности плоскостью, ориентированной в заданном направлении относительно — этой (геометрической) поверхности 3 (рис. 188, а).
Измеренный профиль — сечение измеренной поверхности плоскостью, ориентированной относительно геометрической поверхности под заданным углом а. Графическое изображение измеренного профиля называют профилограммой.
Шаг неровностей — среднее расстояние между вершинами характерных неровностей измеренного профиля.
Базовая длина — длина участка поверхности, выбираемая для измерения шероховатости поверхности без учета других видов неровностей (например, волнистости), имеющих шаг более I (рис, 188, б).
Средняя линия профиля — линия, имеющая форму геометрического — профиля; она является базой для определения значений шероховатости (рис. 188, 6). Средняя линия должна делить измеряемый профиль так, чтобы (в пределах базовой линии) площади по обеим сторонам от средней линии до линии профиля были примерно равны между собой, т. е.
По ГОСТ 2789—73 различают 14 классов чистоты поверхности (1-й класс самый грубый). Класс чистоты поверхностей обозначают треугольником с номером класса, например yl; у 5.
Шероховатость поверхности грубее 1-го класса обозначают знаком над которым указывают высоту неровностей R, в микронах, например 500, 800.
Для каждого класса чистоты поверхности установлены максимальные значения Ra и Rz при выбранных базовых длинах I. Например,, для класса V3 при базовой длине і = 8 мм величина Ra = 20 мкм, Rz — 80 мкм.
Для 6—12-классов чистоты поверхности основной характеристикой шероховатости является R, а для классов 1—5, 13 и 14-го — /?
Для оценки чистоты поверхности и измерения ее шероховатости применяют эталоны чистоты поверхности и различные приборы.
Посадка изделий
Это способ соединения метизов. Он характеризуется как наличием свободы движения, так и ее отсутствием. Все зависит от того, насколько габариты двух составных частей соответствуют друг другу. Обычно подразумевается один метиз, который помещается в паз или слот.
Посмотрим, как у нас будет меняться посадка, если изначальные размеры не соответствуют объектам. То есть, появляется зазор или натяг. И каким образом это может сказать на дальнейшем процессе сбора.
Посадка с зазором
В части случаев это строго необходимое требование. Как вариант, шпиндель на подшипниках во фрезерном станке. Тут зазор положен по регламенту. Но небольшой. А вот при размещении колец на отправке в том же агрегате, положен серьезная свобода. И если поменять их местами, то шпиндель не сможет нормально работать на скорости. А кольца не дадут ход, слишком туго затянувшись.
Получается, что, отклоняясь от норм зазора, проблемы становятся еще неприятнее, чем при обычном выходе метиза за пределы допуска.
Посадка с натягом
Обратная ситуация. Тут значение расхождений не так важно, при работе ощущается гораздо менее явно. Но есть свой нюанс. Ведь если натяг в итоге получится слишком крупным, то поместить изделие в паз будет невозможно. Подогнать пару десятых миллиметра – это вполне реализуемо даже без специальных приспособлений. А вот справиться с расхождением в 0.7-1 мм, просто нереально. Придется заново снимать стружку, иначе оба объекта при прессовке деформируются или треснут. Зависит от материала, который был задействован при их создании.
Допуски и посадки
Понятие о взаимозаменяемости деталей
На современных заводах станки, автомобили, тракторы и другие машины изготовляются не единицами и даже не десятками и сотнями, а тысячами. При таких размерах производства очень важно, чтобы каждая деталь машины при сборке точно подходила к своему месту без какой-либо дополнительной слесарной пригонки. Не менее важно, чтобы любая деталь, поступающая на сборку, допускала замену ее другой одного с ней назначения без всякого ущерба для работы всей готовой машины. Детали, удовлетворяющие таким условиям, называют взаимозаменяемыми.
— это свойство деталей занимать свои места в узлах и изделиях без всякого предварительного подбора или подгонки по месту и выполнять свои функции в соответствии с предписанными техническими условиями.
Сопряжение деталей
Две детали, подвижно или неподвижно соединяемые друг с другом, называют сопрягаемыми
. Размер, по которому происходит соединение этих деталей, называют
сопрягаемым размером
. Размеры, по которым не происходит соединения деталей, называют
свободными
размерами. Примером сопрягаемых размеров может служить диаметр вала и соответствующий диаметр отверстия в шкиве; примером свободных размеров может служить наружный диаметр шкива.
Для получения взаимозаменяемости сопрягаемые размеры деталей должны быть точно выполнены. Однако такая обработка сложна и не всегда целесообразна. Поэтому техника нашла способ получать взаимозаменяемые детали при работе с приближенной точностью. Этот способ заключается в том, что для различных условий работы детали устанавливают допустимые отклонения ее размеров, при которых все же возможна безукоризненная работа детали в машине. Эти отклонения, рассчитанные для различных условий работы детали, построены в определенной системе, которая называется системой допусков.
Понятие о допусках
Характеристика размеров. Расчетный размер детали, проставляемый на чертеже, от которого отсчитываются отклонения, называется номинальным размером
. Обычно номинальные размеры выражаются в целых миллиметрах.
Размер детали, фактически полученный при обработке, называется действительным размером
Размеры, между которыми может колебаться действительный размер детали, называются предельными
. Из них больший размер называется
наибольшим предельным размером
, а меньший —
наименьшим предельным размером
.
называется разность между предельным и номинальным размерами детали. На чертеже отклонения обозначаются обычно числовыми величинами при номинальном размере, причем верхнее отклонение указывается выше, а нижнее — ниже.
Например, в размере номинальным размером является 30, а отклонениями будут +0,15 и —0,1.
Разность между наибольшим предельным и номинальным размерами называется верхним отклонением
наименьший предельный размер будет:
нижнее отклонение составит
Допуск на изготовление. Разность между наибольшим и наименьшим предельными размерами называется допуском
. Например, для размера вала допуск будет равен разности предельных размеров, т. е.
30,15 — 29,9 = 0,25 мм.
Зазоры и натяги
, так как вал сможет свободно вращаться в отверстии. Если же размер вала будет т. е. всегда больше размера отверстия (рис. 71), то при соединении вал потребуется запрессовать в отверстие и тогда в соединении получится
натяг.
На основании изложенного можно сделать следующее заключение: зазором называют разность между действительными размерами отверстия и вала, когда отверстие больше вала; натягом называют разность между действительными размерами вала и отверстия, когда вал больше отверстия.
Посадки и классы точности
Посадки. Посадки разделяются на подвижные и неподвижные. Ниже приводим наиболее применяемые посадки, причем в скобках даются их сокращенные обозначения.
Классы точности. Из практики известно, что, например, детали сельскохозяйственных и дорожных машин без вреда для их работы могут быть изготовлены менее точно, чем детали токарных станков, автомобилей, измерительных приборов. В связи с этим в машиностроении детали разных машин изготовляются по десяти различным классам точности. Пять из них более точные: 1-й, 2-й, 2а, 3-й, За; два менее точные: 4-й и 5-й; три остальные — грубые: 7-й, 8-й и 9-й.
Чтобы знать, по какому классу точности нужно изготовить деталь, на чертежах рядом с буквой, обозначающей посадку, ставится цифра, указывающая класс точности. Например, С4 означает: скользящая посадка 4-го класса точности; Х3 — ходовая посадка 3-го класса точности; П — плотная посадка 2-го класса точности. Для всех посадок 2-го класса цифра 2 не ставится, так как этот класс точности применяется особенно широко.
Система отверстия и система вала
Различают две системы расположения допусков — систему отверстия и систему вала.
Система отверстия (рис. 72) характеризуется тем, что в ней для всех посадок одной и той же степени точности (одного класса), отнесенных к одному и тому же номинальному диаметру, отверстие имеет постоянные предельные отклонения, разнообразие же посадок получается за счет изменения предельных отклонений вала.
Система вала (рис. 73) характеризуется тем, что в ней для всех посадок одной и той же степени точности (одного класса), отнесенных к одному и тому же номинальному диаметру, вал имеет постоянные предельные отклонения, разнообразие же посадок в этой системе осуществляется за счет изменения предельных отклонений отверстия.
На чертежах систему отверстия обозначают буквой А, а систему вала — буквой В. Если отверстие изготовляется по системе отверстия, то у номинального размера ставят букву А с цифрой, соответствующей классу точности. Например, 30А3 означает, что отверстие должно быть обработано по системе отверстия 3-го класса точности, а 30А — по системе отверстия 2-го класса точности. Если же отверстие обрабатывается по системе вала, то у номинального размера ставят обозначение посадки и соответствующего класса точности. Например, отверстие 30С4 означает, что отверстие нужно обработать с предельными отклонениями по системе вала, по скользящей посадке 4-го класса точности. В том случае, когда вал изготовляется по системе вала, ставят букву В и соответствующий класс точности. Например, 30В3 будет означать обработку вала по системе вала 3-го класса точности, а 30В — по системе вала 2-го класса точности.
В машиностроении систему отверстия применяют чаще, чем систему вала, так как это сопряжено с меньшими расходами на инструмент и оснастку. Например, для обработки отверстия данного номинального диаметра при системе отверстия для всех посадок одного класса требуется только одна развертка и для измерения отверстия — одна /предельная пробка, а при системе вала для каждой посадки в пределах одного класса нужна отдельная развертка и отдельная предельная пробка.
Таблицы отклонений
Для определения и назначения классов точности, посадок и величины допусков пользуются специальными справочными таблицами. Так как допустимые отклонения являются обычно очень малыми величинами, то, чтобы не писать лишних нулей, в таблицах допусков их обозначают в тысячных долях миллиметра, называемых микронами
; один микрон равен 0,001 мм.
В качестве примера приведена таблица 2-го класса точности для системы отверстия (табл. 7).
В первой графе таблицы даны номинальные диаметры, во второй графе — отклонения отверстия в микронах. В остальных графах приводятся различные посадки с соответствующими им отклонениями. Знак плюс показывает, что отклонение прибавляется к номинальному размеру, а минус — что отклонение вычитается из номинального размера.
В качестве примера определим посадку движения в системе отверстия 2-го класса точности для соединения вала с отверстием номинального диаметра 70 мм.
В графе «Посадка движения» против размера от 50 до 80 указано отклонение для вала Следовательно, наибольший предельный размер вала 70-0,012 = 69,988 мм, а наименьший предельный размер 70-0,032 = 69,968 мм.
Предельные отклонения отверстия и вала для системы отверстия по 2-му классу точности (по ОСТ 1012). Размеры в микронах (1 мк = 0,001 мм)
1. Что называется взаимозаменяемостью деталей в машиностроении? 2. Для чего назначают допустимые отклонения размеров деталей? 3. Что такое номинальный, предельный и действительный размеры? 4. Может ли предельный размер равняться номинальному? 5. Что называется допуском и как определить допуск? 6. Что называется верхним и нижним отклонениями? 7. Что называется зазором и натягом? Для чего предусматриваются в соединении двух деталей зазор и натяг? 8. Какие бывают посадки и как их обозначают на чертежах? 9. Перечислите классы точности. 10. Сколько посадок имеет 2-й класс точности? 11. Чем отличается система отверстия от системы вала? 12. Будут ли изменяться предельные отклонения отверстия для различных посадок в системе отверстия? 13. Будут ли изменяться предельные отклонения вала для различных посадок в системе отверстия? 14. Почему в машиностроении система отверстия применяется чаще, чем система вала? 15. Как проставляются на чертежах условные обозначения отклонений в размерах отверстия, если детали выполняются в системе отверстия? 16. В каких единицах указаны отклонения в таблицах? 17. Определите, пользуясь табл. 7, отклонения и допуск на изготовление вала с номинальным диаметром 50 мм; 75 мм; 90 мм.
Глава X
Точность обрабатываемых деталей по классам
Мы уже поняли, насколько важно, чтобы вышедшее из-под станка изделие соответствовало параметрам, заявленным чертежом. Но эта значимость в различных случаях отличается. Легко понять, что черенок от граблей не обязан быть подходящим по размеру под стальную часть до сотой Мкм. И при этом составляющие станка должны быть очень точно подобраны, не выходить за размерные рамки. А ювелирные весы имеют и еще более высокие требования. Все подстраивается под конечную цель финального прибора. И в зависимости от этого фактора, принято выявлять классы. И их сейчас по современным регламентам ровной десять штук. И к высокоточным относится ровно половина — с первого по пятый. К диапазону среднего уровня принадлежат шестой и седьмой класс. А оставшиеся три считаются неточными.
Перед установкой настроек для работы важно не только обращать внимание на схему, точные значения, но и класс. Хотя этот фактор зачастую учитывается при формировании чертежа. Но уточнить на всякий случай все же стоит. То есть, получается новый алгоритм, как определить точность обработки детали на станке. Не только указанные диапазоны изменений в чертеже имеют значение, но и характеристика по классу.
Применение по областям
Указанные выше группы используются повсеместно. Сейчас чуть меньше, ведь появились и иные ориентиры. А вот еще 25-30 лет назад это были главные факторы, на которые все ориентировались при определении отклонений.
Посмотрим, где сейчас используются классы:
Классы точности.
Точность изготовления характеризуется величиной допускаемых отклонений от заданных размеров и формы. Для разных машин требуются детали с различной точностью обработки. Очевидно, что детали плуга, дорожного катка и других сельскохозяйственных и дорожных машин могут быть изготовлены менее точно, чем детали фрезерного станка, а детали фрезерного станка требуют меньшей точности, чем детали измерительного прибора. В связи с этим в машиностроении детали разных машин изготовляют по разным классам точности. В СССР (были) приняты десять классов точности.
Применение классов точности в различных областях
Чтобы показать, с какой посадкой и по какому классу точности нужно изготовить деталь, в чертежах на номинальных сопрягаемых размерах ставится буква, обозначающая посадку, и цифра, соответствующая классу точности. Например, С4 означает: скользящая посадка 4-го класса точности; Х3 — ходовая посадка 3-го класса точности и т. п. Для посадок 2-го класса точности (особенно широко распространенных) цифра 2 не ставится. Поэтому, если в чертеже на сопрягаемом размере рядом с буквой посадки нет цифры, то это значит, что деталь надо изготовить по 2-му классу точности. Например, Л означает легкоходовая посадка 2-го класса точности.
Причины неточностей
Мы уже частично упоминали эти факторы. Но давайте скомпилируем полученные знания. Неточность зачастую возникает:
Таблица допусков
При работе с деревом обычно заявленные требования становятся ниже, чем для стали. Ведь этот материал подразумевает наличие различных неровностей после процедур, шероховатостей, деформаций по годовым кольцам или возможных микротрещин. Диапазоны у них более щадящие. Да и доработка проводится легче. При этом существует определенный запас для натяга. Деформация древесных волокон происходит проще, чем стальных элементов.
В данной таблице приведены значения исключительно для древесного материала, шпона, массива. Для финальной сверки используются различные измерительные инструменты. Линейки, штангенциркули и обычные метры.
Интервал | Уровень допуска | ||||||||
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
1-3 | 0,1 | 0,14 | 0,25 | 0,4 | 0,6 | 1 | 1.4 | ||
3-6 | 0,12 | 0,18 | 0,3 | 0,48 | 0,75 | 1,2 | 1,8 | ||
6-10 | 0,15 | 0,22 | 0,36 | 0,58 | 0,9 | 1,5 | 2,2 | ||
10-18 | 0,18 | 0,27 | 0,43 | 0,7 | 1,1 | 1,8 | 2,7 | ||
18-30 | 0,21 | 0,33 | 0,52 | 0,84 | 1,3 | 2,1 | 3,3 | ||
30-50 | 0,25 | 0,38 | 0,62 | 1 | 1,6 | 2,5 | 3,9 | ||
50-80 | 0,19 | 0,3 | 0,46 | 0,74 | 1,2 | 1,9 | 3 | 4,6 |
в машиностроении, характеристика точности изготовления изделия (детали, узла, машины или прибора), определяемая значениями
допусков,
указанных в стандартах. К. т. могут быть установлены на отдельные геометрические параметры изделий, например на линейные размеры, углы, параметры зубчатых колёс и т.д., и на изделия в целом, например на
металлорежущие станки, подшипники качения
и т.д. К. т. отдельных геометрических параметров являются составной частью стандартных систем допусков и посадок для типовых соединений в машиностроении, например гладких, резьбовых, конических, шлицевых, и, как правило, распространяются на допуски данного геометрического параметра в любых изделиях.
В большинстве стандартных систем допуски во всех К. т. определяют на основе единицы допуска i
, зависящей от номинального размера. Например, для гладких цилиндрических соединений единица допуска (в
мкм
) при размерах 1—500
мм
равна:
i
= 0,5 (в общесоюзной системе ОСТ),
i =
0,45 + 0,001 (в международной системе ИСО), где
d —
среднее значение номинальных размеров (в
мм
) для данного интервала, в пределах которого допуск принимают постоянным. Для каждого К. т. при подсчёте допуска выбирают определённое число единиц допуска, которые составляют геометрическую прогрессию обычно со знаменателем 1,6, реже 1,25 или 2. В каждой системе допусков существует несколько К. т. Они обозначаются порядковыми номерами. Обычно номер К. т. возрастает с увеличением допусков. Например, в системе допусков ОСТ для цилиндрических соединений при размерах от 1 до 500
мм
имеются К. т.: 1, 2, 2а, 3, 3а, 4, 5, которые используют, как правило, для сопрягаемых размеров, и 7, 8, 9, 10 — для неответственных, так называемых свободных размеров. Установлены также классы точнее 1-го, обозначаемые (в порядке уменьшения допуска) 09, 08, 07, 06, 05, 04, 03, 02 и предназначенные для измерительных средств (калибры, концевые меры) и деталей в особо точных соединениях (посадки прецизионных подшипников). В системе ИСО — 18 основных К. т. (иногда их называют квалитетами), обозначаемых номерами 01, 0, 1, 2,…, 16.
К. т. устанавливаются на некоторые изделия в целом. В этом случае на машину, прибор или узел разрабатывают стандарты, в которых определяют допуски основных эксплуатационных показателей, а также др. свойств изделия, влияющих на точность его работы. Например, К. т. металлорежущего станка определяют отклонения размеров и геометрической формы поверхностей деталей, обработанных на этом станке, а также предельные погрешности базирующих поверхностей станка, предельные погрешности взаимного перемещения рабочих органов станка и т.п.; К. т. подшипников качения — предельные погрешности вращения подшипников, а также точность выполнения их монтажных поверхностей.
К. т. — важная эксплуатационная, технологическая и экономическая характеристика изделия, определяющая степень приближения параметров изделия к их расчетным значениям. От К. т. зависят точность сборки, трудоёмкость и стоимость изготовления, выбор оборудования для обработки и контроля. К. т. может влиять на выбор материала изделия, его конструкцию и др. свойства.