Что понимают под универсальностью молекул биополимеров

Процессы жизнедеятельности на молекулярном уровне

Вопрос 1. Какие процессы исследуют ученые на молекулярном уровне?
На молекулярном уровне изучаются важнейшие процессы жизнедеятельности организма: его рост и развитие, обмен веществ и превращение энергии, хранение и передача наследственной информации, изменчивость. Элементарной единицей на молекулярном уровне служит ген – фрагмент молекулы нуклеиновой кислоты, в котором записан определённый в качественном и количественном отношении объём биологической информации.

Вопрос 2. Какие элементы преобладают в составе живых организмов?
В составе живого организма насчитывают более 70—80 химических элементов, однако преобладают углерод, кислород, водород, азот и фосфор.

Вопрос 3. Почему молекулы белков, нуклеиновых кислот, углеводов и липидов рассматриваются как биополимеры только в клетке?
Молекулы белков, нуклеиновых кислот, углеводов и липидов являются полимерами, так как состоят из повторяющихся мономеров. Но лишь в живой системе (клетке, организме) эти вещества проявляют свою биологическую сущность, обладая рядом специфических свойств и выполняя множество важнейших функций. Поэтому в живых системах такие вещества называют биополимерами. Вне живой системы эти вещества теряют свои биологические свойства свойства и не являются биополимрами.

Вопрос 4. Что понимается под универсальностью молекул биополимеров?
Независимо от уровня сложности и выполняемых в клетке функций все биополимеры обладают следующими особенностями:
• в их молекулах мало длинных ответвлений, но много коротких;
• полимерные цепи прочны и не распадаются самопроизвольно на части;
• способны нести разнообразные функциональные группы и молекулярные фрагменты, обеспечивающие биохимическую функциональную активность, т. е. способность осуществлять нужные клетке биохимические реакции и превращения в среде внутриклеточного раствора;
• обладают гибкостью, достаточной для образования очень сложных пространственных структур, необходимых для выполнения биохимических функций, т. е. для работы белков как молекулярных машин, нуклеиновых кислот как программирующих молекул и т.д.;
• связи С—Н и С—С биополимеров, несмотря на их прочность, одновременно являются аккумуляторами электронной энергии.
Главным свойством биополимеров является линейность полимерных цепей, так как только линейные структуры легко кодируются и «собираются» из мономеров. Кроме того, если полимерная нить обладает гибкостью, то из нее довольно просто образовать нужную пространственную конструкцию, а после тот как построенная таким образом молекулярная машина амортизируется, сломается, ее легко разобрать на составные элементы, чтобы снова их использовать. Сочетание этих свойств имеется только в полимерах на углеродной основе. Все биополимеры в живых системах способны выполнять определённые свойства и выполнять множество важнейших функций. Свойства биополимеров зависят от числа, состава и порядка расположения составляющих их мономеров. Возможность изменения состава и последовательности мономеров в структуре полимера позволяет существовать огромному разнообразию вариантов биополимеров, независимо от видовой принадлежности организма. У всех живых организмов биополимеры построены по единому плану.

Источник

Процессы жизнедеятельности на молекулярном уровне

Вопрос 1. Какие процессы исследуют ученые на молекулярном уровне?
На молекулярном уровне изучаются важнейшие процессы жизнедеятельности организма: его рост и развитие, обмен веществ и превращение энергии, хранение и передача наследственной информации, изменчивость. Элементарной единицей на молекулярном уровне служит ген – фрагмент молекулы нуклеиновой кислоты, в котором записан определённый в качественном и количественном отношении объём биологической информации.

Вопрос 2. Какие элементы преобладают в составе живых организмов?
В составе живого организма насчитывают более 70—80 химических элементов, однако преобладают углерод, кислород, водород, азот и фосфор.

Вопрос 3. Почему молекулы белков, нуклеиновых кислот, углеводов и липидов рассматриваются как биополимеры только в клетке?
Молекулы белков, нуклеиновых кислот, углеводов и липидов являются полимерами, так как состоят из повторяющихся мономеров. Но лишь в живой системе (клетке, организме) эти вещества проявляют свою биологическую сущность, обладая рядом специфических свойств и выполняя множество важнейших функций. Поэтому в живых системах такие вещества называют биополимерами. Вне живой системы эти вещества теряют свои биологические свойства свойства и не являются биополимрами.

Вопрос 4. Что понимается под универсальностью молекул биополимеров?
Независимо от уровня сложности и выполняемых в клетке функций все биополимеры обладают следующими особенностями:
• в их молекулах мало длинных ответвлений, но много коротких;
• полимерные цепи прочны и не распадаются самопроизвольно на части;
• способны нести разнообразные функциональные группы и молекулярные фрагменты, обеспечивающие биохимическую функциональную активность, т. е. способность осуществлять нужные клетке биохимические реакции и превращения в среде внутриклеточного раствора;
• обладают гибкостью, достаточной для образования очень сложных пространственных структур, необходимых для выполнения биохимических функций, т. е. для работы белков как молекулярных машин, нуклеиновых кислот как программирующих молекул и т.д.;
• связи С—Н и С—С биополимеров, несмотря на их прочность, одновременно являются аккумуляторами электронной энергии.
Главным свойством биополимеров является линейность полимерных цепей, так как только линейные структуры легко кодируются и «собираются» из мономеров. Кроме того, если полимерная нить обладает гибкостью, то из нее довольно просто образовать нужную пространственную конструкцию, а после тот как построенная таким образом молекулярная машина амортизируется, сломается, ее легко разобрать на составные элементы, чтобы снова их использовать. Сочетание этих свойств имеется только в полимерах на углеродной основе. Все биополимеры в живых системах способны выполнять определённые свойства и выполнять множество важнейших функций. Свойства биополимеров зависят от числа, состава и порядка расположения составляющих их мономеров. Возможность изменения состава и последовательности мономеров в структуре полимера позволяет существовать огромному разнообразию вариантов биополимеров, независимо от видовой принадлежности организма. У всех живых организмов биополимеры построены по единому плану.

Источник

§ 4. Молекулярный уровень: общая характеристика (окончание)

Свойства биополимеров зависят от строения их молекул: от числа и разнообразия мономерных звеньев, образующих полимер. Все они универсальны, так как построены по одному плану у всех живых организмов, независимо от видовой принадлежности.

Для каждого вида биополимеров характерны определённое строение и функции. Так, молекулы белков являются основными структурными элементами клеток и регулируют протекающие в них процессы. Нуклеиновые кислоты участвуют в передаче генетической (наследственной) информации от клетки к клетке, от организма к организму. Углеводы и жиры представляют собой важнейшие источники энергии, необходимой для жизнедеятельности организмов.

Именно на молекулярном уровне происходит превращение всех видов энергии и обмен веществ в клетке. Механизмы этих процессов также универсальны для всех живых организмов.

В то же время оказалось, что разнообразные свойства биополимеров, входящих в состав всех организмов, обусловлены различными сочетаниями всего лишь нескольких типов мономеров, образующих множество вариантов длинных полимерных цепей. Этот принцип лежит в основе многообразия жизни на нашей планете.

Специфические свойства биополимеров проявляются только в живой клетке. Выделенные из клеток, молекулы биополимеров теряют биологическую сущность и характеризуются лишь физико-химическими свойствами того класса соединений, к которому они относятся.

Только изучив молекулярный уровень, можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности и процессов обмена веществ в живом организме.

Органические вещества: белки, нуклеиновые кислоты, углеводы, жиры (липиды). Биополимеры. Мономеры

Ответьте на вопросы

1. Какие процессы исследуют учёные на молекулярном уровне? 2. Какие элементы преобладают в составе живых организмов? 3. Почему молекулы белков, нуклеиновых кислот, углеводов и липидов рассматриваются как биополимеры только в клетке? 4. Что понимается под универсальностью молекул биополимеров? 5. Чем достигается разнообразие свойств биополимеров, входящих в состав живых организмов?

Какие биологические закономерности можно сформулировать на основе анализа текста параграфа? Обсудите их с учащимися класса.

Источник

Молекулярный уровень: общая характеристика

Вопрос 1. Какие процессы исследуют ученые на молекулярном уровне?

На молекулярном уровне изучаются важнейшие процессы жизнедеятельности организма: его рост и развитие, обмен веществ и превращение энергии, хранение и передача наследственной информации, изменчивость.

Вопрос 2. Какие элементы преобладают в составе живых организмов?

В составе живого организма насчитывают более 70—80 химических элементов, однако преобладают углерод, кислород, водород и азот.

Вопрос 3. Почему молекулы белков, нуклеиновых кислот, углеводов и липидов рассматриваются как биополимеры только в клетке?

Молекулы белков, нуклеиновых кислот, углеводов и липидов являются полимерами, так как состоят из повторяющихся мономеров. Но лишь в живой системе (клетке, организме) эти вещества проявляют свою биологическую сущность, обладая рядом специфических свойств и выполняя множество важнейших функций. Поэтому в живых системах такие вещества называют биополимерами. Вне живой системы эти вещества теряют свои биологические свойства и не являются биополимерами.

Вопрос 4. Что понимается под универсальностью молекул биополимеров?

Свойства биополимеров зависят от числа, состава и порядка расположения составляющих их мономеров. Возможность изменения состава и последовательности мономеров в структуре полимера позволяет существовать огромному разнообразию вариантов биополимеров, независимо от видовой принадлежности организма. У всех живых организмов биополимеры построены по единому плану.

Источник

Какие процессы используют ученые на молекулярном уровне. Молекулярный уровень: общая характеристика — Гипермаркет знаний

Вопрос 1. Какие процессы исследуют ученые на молекулярном уровне?
На молекулярном уровне изучаются важнейшие процессы жизнедеятельности организма: его рост и развитие, обмен веществ и превращение энергии, хранение и передача наследственной информации, изменчивость. Элементарной единицей на молекулярном уровне служит ген – фрагмент молекулы нуклеиновой кислоты, в котором записан определённый в качественном и количественном отношении объём биологической информации.

Вопрос 2. Какие элементы преобладают в составе живых организмов?
В составе живого организма насчитывают более 70-80 химических элементов, однако преобладают углерод, кислород, водород, азот и фосфор.

Вопрос 3. Почему молекулы белков, нуклеиновых кислот, углеводов и липидов рассматриваются как биополимеры только в клетке?
Молекулы белков, нуклеиновых кислот, углеводов и липидов являются полимерами, так как состоят из повторяющихся мономеров. Но лишь в живой системе (клетке, организме) эти вещества проявляют свою биологическую сущность, обладая рядом специфических свойств и выполняя множество важнейших функций. Поэтому в живых системах такие вещества называют биополимерами. Вне живой системы эти вещества теряют свои биологические свойства свойства и не являются биополимрами.

Вопрос 4. Что понимается под универсальностью молекул биополимеров?
Независимо от уровня сложности и выполняемых в клетке функций все биополимеры обладают следующими особенностями:
в их молекулах мало длинных ответвлений, но много коротких;
полимерные цепи прочны и не распадаются самопроизвольно на части;
способны нести разнообразные функциональные группы и молекулярные фрагменты, обеспечивающие биохимическую функциональную активность, т. е. способность осуществлять нужные клетке биохимические реакции и превращения в среде внутриклеточного раствора;
обладают гибкостью, достаточной для образования очень сложных пространственных структур, необходимых для выполнения биохимических функций, т. е. для работы белков как молекулярных машин, нуклеиновых кислот как программирующих молекул и т.д.;
связи С-Н и С-С биополимеров, несмотря на их прочность, одновременно являются аккумуляторами электронной энергии.
Главным свойством биополимеров является линейность полимерных цепей, так как только линейные структуры легко кодируются и «собираются» из мономеров. Кроме того, если полимерная нить обладает гибкостью, то из нее довольно просто образовать нужную пространственную конструкцию, а после тот как построенная таким образом молекулярная машина амортизируется, сломается, ее легко разобрать на составные элементы, чтобы снова их использовать. Сочетание этих свойств имеется только в полимерах на углеродной основе. Все биополимеры в живых системах способны выполнять определённые свойства и выполнять множество важнейших функций. Свойства биополимеров зависят от числа, состава и порядка расположения составляющих их мономеров. Возможность изменения состава и последовательности мономеров в структуре полимера позволяет существовать огромному разнообразию вариантов биополимеров, независимо от видовой принадлежности организма. У всех живых организмов биополимеры построены по единому плану.

/ Глава 1. Молекулярный уровень Задание: §1.1. Молекулярный уровень общая характеристика

Ответ на Глава 1. Молекулярный уровень Задание: §1.1. Молекулярный уровень общая характеристика
Готовые домашние задания (ГДЗ) Биология Пасечник, Каменский 9 класс

Биология

9 класс

Вопрос 1. Какие процессы исследуют ученые на молекулярном уровне?

На молекулярном уровне изучаются важнейшие процессы жизнедеятельности организма: его рост и развитие, обмен ве­ществ и превращение энергии, хранение и передача наследственной информации, изменчивость.

Вопрос 2. Какие элементы преобладают в со­ставе живых организмов?

В составе живого организма насчитыва­ют более 70-80 химических элементов, однако преобладают углерод, кислород, водород и азот.

Вопрос 3. Почему молекулы белков, нукле­иновых кислот, углеводов и липидов рассматрива­ются как биополимеры только в клетке?

Молекулы белков, нуклеиновых кислот, углеводов и липидов являются полимера­ми, так как состоят из повторяющихся мо­номеров. Но лишь в живой системе (клет­ке, организме) эти вещества проявляют свою биологическую сущность, обладая рядом специфических свойств и выполняя множество важнейших функций. Поэтому в живых системах такие вещества назы­вают биополимерами. Вне живой систе­мы эти вещества теряют свои биологи­ческие свойства и не являются биополиме­рами.

Вопрос 4. Что понимается под универсально­стью молекул биополимеров?

Свойства биополимеров зависят от чис­ла, состава и порядка расположения со­ставляющих их мономеров. Возможность изменения состава и последовательности мономеров в структуре полимера позво­ляет существовать огромному разнообра­зию вариантов биополимеров, независи­мо от видовой принадлежности организ­ма. У всех живых организмов биополиме­ры построены по единому плану.

Молекулярный уровень: общая характеристика


1. Что такое химический элемент?
2. Что называется атомом и молекулой?
3. Какие органические вещества вам известны?

Любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул.

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

Текущая страница: 2 (всего у книги 16 страниц) [доступный отрывок для чтения: 11 страниц]

Биология – наука о жизни – одна из древнейших наук. Знания о живых организмах человек накапливал на протяжении тысячелетий. По мере накопления знаний происходила дифференциация биологии на самостоятельные науки (ботаника, зоология, микробиология, генетика и др.). Всё больше возрастает значение пограничных дисциплин, связывающих биологию с другими науками – физикой, химией, математикой и др. В результате интеграции возникли биофизика, биохимия, космическая биология и др.

В настоящее время биология – комплексная наука, сформировавшаяся в результате дифференциации и интеграции разных дисциплин.

В биологии применяются различные методы исследования: наблюдение, эксперимент, сравнение и др.

Биология изучает живые организмы. Они являются открытыми биологическими системами, получающими энергию и питательные вещества из окружающей среды. Живые организмы реагируют на внешние воздействия, содержат всю информацию, необходимую им для развития и размножения, и приспособлены к определённой среде обитания.

Всем живым системам, независимо от уровня организации, присущи общие черты, а сами системы находятся в непрерывном взаимодействии. Учёные выделяют следующие уровни организации живой природы: молекулярный, клеточный, организменный, популяционно-видовой, экосистемный и биосферный.

Глава 1. Молекулярный уровень

Молекулярный уровень можно назвать начальным, наиболее глубинным уровнем организации живого. Каждый живой организм состоит из молекул органических веществ – белков, нуклеиновых кислот, углеводов, жиров (липидов), получивших название биологических молекул. Биологи исследуют роль этих важнейших биологических соединений в росте и развитии организмов, хранении и передаче наследственной информации, обмене веществ и превращении энергии в живых клетках и в других процессах.

Из этой главы вы узнаете

Что такое биополимеры;

Какое строение имеют биомолекулы;

Какие функции выполняют биомолекулы;

Что такое вирусы и в чём их особенность.

§ 4. Молекулярный уровень: общая характеристика

1. Что такое химический элемент?

2. Что называется атомом и молекулой?

3. Какие органические вещества вам известны?

Любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул.

Рис. 4. Схема строения мономеров и полимеров

Свойства биополимеров зависят от строения их молекул: от числа и разнообразия мономерных звеньев, образующих полимер. Все они универсальны, так как построены по одному плану у всех живых организмов, независимо от видовой принадлежности.

Для каждого вида биополимеров характерны определённое строение и функции. Так, молекулы белков являются основными структурными элементами клеток и регулируют протекающие в них процессы. Нуклеиновые кислоты участвуют в передаче генетической (наследственной) информации от клетки к клетке, от организма к организму. Углеводы и жиры представляют собой важнейшие источники энергии, необходимой для жизнедеятельности организмов.

Именно на молекулярном уровне происходит превращение всех видов энергии и обмен веществ в клетке. Механизмы этих процессов также универсальны для всех живых организмов.

В то же время оказалось, что разнообразные свойства биополимеров, входящих в состав всех организмов, обусловлены различными сочетаниями всего лишь нескольких типов мономеров, образующих множество вариантов длинных полимерных цепей. Этот принцип лежит в основе многообразия жизни на нашей планете.

Специфические свойства биополимеров проявляются только в живой клетке. Выделенные из клеток, молекулы биополимеров теряют биологическую сущность и характеризуются лишь физико-химическими свойствами того класса соединений, к которому они относятся.

Только изучив молекулярный уровень, можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности и процессов обмена веществ в живом организме.

Преемственность между молекулярным и следующим за ним клеточным уровнем обеспечивается тем, что биологические молекулы – это тот материал, из которого образуются надмолекулярные – клеточные – структуры.

Органические вещества: белки, нуклеиновые кислоты, углеводы, жиры (липиды). Биополимеры. Мономеры

1. Какие процессы исследуют учёные на молекулярном уровне?

2. Какие элементы преобладают в составе живых организмов?

3. Почему молекулы белков, нуклеиновых кислот, углеводов и липидов рассматриваются как биополимеры только в клетке?

4. Что понимается под универсальностью молекул биополимеров?

5. Чем достигается разнообразие свойств биополимеров, входящих в состав живых организмов?

Какие биологические закономерности можно сформулировать на основе анализа текста параграфа? Обсудите их с учащимися класса.

§ 5. Углеводы

1. Какие вещества, относящиеся к углеводам, вам известны?

2. Какую роль играют углеводы в живом организме?

3. В результате какого процесса углеводы образуются в клетках зелёных растений?

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 5. Строение молекул простых и сложных углеводов

Полисахариды состоят из большого числа моносахаридов. К ним относятся крахмал, гликоген, целлюлоза, хитин и др. (рис. 6). С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.

Углеводы используются и в качестве строительного материала . Так, целлюлоза является важным структурным компонентом клеточных стенок многих одноклеточных, грибов и растений. Благодаря особому строению целлюлоза нерастворима в воде и обладает высокой прочностью. В среднем 20–40 % материала клеточных стенок растений составляет целлюлоза, а волокна хлопка – почти чистая целлюлоза, и именно поэтому они используются для изготовления тканей.

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 6. Схема строения полисахаридов

Хитин входит в состав клеточных стенок некоторых простейших и грибов, встречается он и у отдельных групп животных, например у членистоногих, в качестве важного компонента их наружного скелета.

Известны также сложные полисахариды, состоящие из двух типов простых Сахаров, которые регулярно чередуются в длинных цепях. Такие полисахариды выполняют структурные функции в опорных тканях животных. Они входят в состав межклеточного вещества кожи, сухожилий, хрящей, придавая им прочность и эластичность.

Некоторые полисахариды входят в состав клеточных мембран и служат рецепторами, обеспечивая узнавание клетками друг друга и их взаимодействие.

Углеводы, или сахариды. Моносахариды. Дисахариды. Полисахариды. Рибоза. Дезоксирибоза. Глюкоза. Фруктоза. Галактоза. Сахароза. Мальтоза. Лактоза. Крахмал. Гликоген. Хитин

1. Какой состав и строение имеют молекулы углеводов?

2. Какие углеводы называются моно-, ди– и полисахаридами?

3. Какие функции выполняют углеводы в живых организмах?

Проанализируйте рисунок 6 «Схема строения полисахаридов» и текст параграфа. Какие предположения вы можете выдвинуть на основе сравнения особенностей строения молекул и функций, выполняемых крахмалом, гликогеном и целлюлозой в живом организме? Обсудите этот вопрос с одноклассниками.

§ 6. Липиды

1. Какие жироподобные вещества вам известны?

2. Какие продукты питания богаты жирами?

3. Какова роль жиров в организме?

Липиды (от греч. lipos – жир) – обширная группа жироподобных веществ, нерастворимых в воде. Большинство липидов состоит из высокомолекулярных жирных кислот и трёхатомного спирта глицерина (рис. 7).

Липиды присутствуют во всех без исключения клетках, выполняя специфические биологические функции.

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 7. Строение молекулы триглицерида

Жиры являются основной формой запасания липидов в клетке. У позвоночных животных примерно половина энергии, потребляемой клетками в состоянии покоя, образуется за счёт окисления жиров. Жиры могут использоваться также в качестве источника воды (при окислении 1 г жира образуется более 1 г воды). Это особенно ценно для арктических и пустынных животных, обитающих в условиях дефицита свободной воды.

Липиды. Жиры. Гормоны. Функции липидов: энергетическая, запасающая, защитная, строительная, регуляторная

1. Какие вещества относятся к липидам?

2. Какое строение имеет большинство липидов?

3. Какие функции выполняют липиды?

4. Какие клетки и ткани наиболее богаты липидами?

Проанализировав текст параграфа, объясните, почему многие животные перед зимой, а проходные рыбы перед нерестом стремятся накопить побольше жира. Приведите примеры животных и растений, у которых это явление наиболее ярко выражено. Всегда ли излишки жира полезны для организма? Обсудите эту проблему в классе.

§ 7. Состав и строение белков

1. Какова роль белков в организме?

2. Какие продукты богаты белками?

Бесконечное разнообразие белков создаётся за счёт различного сочетания всего 20 аминокислот. Каждая аминокислота имеет своё название, особое строение и свойства. Их общую формулу можно представить в следующем виде:

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 8. Примеры строения аминокислот – мономеров белковых молекул

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму, свойства и функции.

Большинство белков имеют вид спирали в результате образования водородных связей между СО и NH-гpуппами разных аминокислотных остатков полипептидной цепи. Водородные связи слабые, но в комплексе они обеспечивают довольно прочную структуру. Эта спираль – вторичная структура белка.

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 9. Схема строения белковой молекулы: I, II, III, IV – первичная, вторичная, третичная, четвертичная структуры

Четвертичная структура характерна не для всех белков. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Например, гемоглобин крови человека представляет комплекс из четырёх макромолекул белка (рис. 10).

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам.

Нарушение природной структуры белка называют денатурацией (рис. 11). Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном – третичная, а затем – вторичная, и белок остаётся в виде полипептидной цепи.

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 10. Схема строения молекулы гемоглобина

Этот процесс частично обратим: если не разрушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Отсюда следует, что все особенности строения макромолекулы белка определяются его первичной структурой.

Роль белков в жизни клетки огромна. Современная биология показала, что сходство и различие организмов определяется в конечном счёте набором белков. Чем ближе организмы друг к другу в систематическом положении, тем более сходны их белки.

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 11. Денатурация белка

Белки, или протеины. Простые и сложные белки. Аминокислоты. Полипептид. Первичная, вторичная, третичная и четвертичная структуры белков

1. Какие вещества называются белками или протеинами?

2. Что такое первичная структура белка?

3. Как образуются вторичная, третичная и четвертичная структуры белка?

4. Что такое денатурация белка?

5. По какому признаку белки делятся на простые и сложные?

Вы знаете, что белок куриного яйца состоит в основном из протеинов. Подумайте, чем объясняется изменение структуры белка у варёного яйца. Приведите другие известные вам примеры, когда структура белка может измениться.

§ 8. Функции белков

1. Какова функция углеводов?

2. Какие функции белков вы знаете?

Белки выполняют чрезвычайно важные и многообразные функции. Это возможно в значительной мере благодаря разнообразию форм и состава самих белков.

Одна из важнейших функций белковых молекул – строительная (пластическая ). Белки входят в состав всех клеточных мембран и органоидов клетки. Преимущественно из белка состоят стенки кровеносных сосудов, хрящи, сухожилия, волосы и ногти.

Двигательную функцию выполняют особые сократительные белки. Благодаря им двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов.

Важное значение имеет транспортная функция белков. Так, гемоглобин переносит кислород из лёгких к клеткам других тканей и органов. В мышцах, помимо гемоглобина, есть ещё один газотранспортный белок – миоглобин. Белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ. Транспортные белки в наружной мембране клеток переносят различные вещества из окружающей среды в цитоплазму.

Специфические белки выполняют защитную функцию . Они предохраняют организм от вторжения чужеродных белков и микроорганизмов и от повреждения. Так, антитела, вырабатываемые лимфоцитами, блокируют чужеродные белки; фибрин и тромбин предохраняют организм от кровопотери.

Функции белков: строительная, двигательная, транспортная, защитная, регуляторная, сигнальная, энергетическая, каталитическая. Гормон. Фермент

1. Чем объясняется многообразие функций белков?

2. Какие функции белков вам известны?

3. Какую роль играют белки-гормоны?

4. Какую функцию выполняют белки-ферменты?

5. Почему белки редко используются в качестве источника энергии?

§ 9. Нуклеиновые кислоты

1. Какова роль ядра в клетке?

2. С какими органоидами клетки связана передача наследственных признаков?

3. Какие вещества называются кислотами?

Нуклеиновые кислоты (от лат. nucleus – ядро) впервые были обнаружены в ядрах лейкоцитов. Впоследствии было выяснено, что нуклеиновые кислоты содержатся во всех клетках, причём не только в ядре, но также в цитоплазме и различных органоидах.

Каждый нуклеотид состоит из трёх компонентов, соединённых прочными химическими связями. Это азотистое основание, углевод (рибоза или дезоксирибоза) и остаток фосфорной кислоты (рис. 12).

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 12. Схема строения нуклеотидов – мономеров ДНК (А) и РНК (Б)

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов.

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 13. Нуклеотиды ДНК

Что понимают под универсальностью молекул биополимеров. Смотреть фото Что понимают под универсальностью молекул биополимеров. Смотреть картинку Что понимают под универсальностью молекул биополимеров. Картинка про Что понимают под универсальностью молекул биополимеров. Фото Что понимают под универсальностью молекул биополимеров

Рис. 14. Комплементарное соединение нуклеотидов

Следовательно, у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых – числу цитидиловых. Зная последовательность нуклеотидов в одной цепи ДНК, по принципу комплементарности можно установить порядок нуклеотидов другой цепи.

С помощью четырёх типов нуклеотидов в ДНК записана вся информация об организме, передающаяся по наследству следующим поколениям. Другими словами, ДНК является носителем наследственной информации.

Молекулы ДНК в основном находятся в ядрах клеток, но небольшое их количество содержится в митохондриях и пластидах.

Молекула РНК, в отличие от молекулы ДНК, – полимер, состоящий из одной цепочки значительно меньших размеров.

Образование полимера РНК происходит через ковалентные связи между рибозой и остатком фосфорной кислоты соседних нуклеотидов.

Выделяют три типа РНК, различающихся по структуре, величине молекул, расположению в клетке и выполняемым функциям.

Рибосомные РНК (рРНК ) входят в состав рибосом и участвуют в формировании их активных центров, где происходит процесс биосинтеза белка.

Транспортные РНК (тРНК ) – самые небольшие по размеру – транспортируют аминокислоты к месту синтеза белка.

Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Молекулы РНК находятся в ядре, цитоплазме, рибосомах, митохондриях и пластидах клетки.

Нуклеиновая кислота. Дезоксирибонуклеиновая кислота, или ДНК. Рибонуклеиновая кислота, или РНК. Азотистые основания: аденин, гуанин, цитозин, тимин, урацил, нуклеотид. Двойная спираль. Комплементарность. Транспортная РНК (тРНК). Рибосомная РНК (рРНК). Информационная РНК (иРНК)

1. Какое строение имеет нуклеотид?

2. Какое строение имеет молекула ДНК?

3. В чём заключается принцип комплементарности?

4. Что общего и какие различия в строении молекул ДНК и РНК?

5. Какие типы молекул РНК вам известны? Каковы их функции?

1. Составьте план параграфа.

2. Учёные выяснили, что фрагмент цепи ДНК имеет следующий состав: Ц-Г Г А А Т Т Ц Ц. Используя принцип комплементарности, достройте вторую цепь.

3. В ходе исследования было установлено, что в изучаемой молекуле ДНК аденины составляют 26 % от общего числа азотистых оснований. Подсчитайте количество других азотистых оснований в этой молекуле.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *