Что посмотреть в микроскоп с ребенком
Детский микроскоп: 10 объектов для исследования
Микроскоп — это прибор не для развлечения, а для познания. Правда, оно бывает настолько увлекательным, что аппарат заменяет многие игры и забавы! Неудивительно, что и взрослые готовы рассматривать под увеличением все то, что интересно детям.
Для первых опытов рекомендуется приобрести недорогой монокулярный микроскоп. Как правило, в комплекте идут дополнительные объективы. Вместе с окуляром аппарат может давать 800-кратное увеличение!
Совсем необязательно покупать или одалживать у знакомых биологов электронный, сканирующий или рентгеновский микроскоп: они предназначены для научного использования в лабораториях. Человек, работающий с ними, должен иметь специальный опыт. Но пока опыта нет, можно исследовать все, что есть под рукой и даже на руках, а обширный список мы как раз подготовили!
1 Мякоть или кожура фрукта или овоща, кусочки грибов, мох
Можно здорово удивиться, что яблоко меняет свой цвет: в зависимости от освещения фрукт становится черным или голубым, а кожура томата отличается бронзовым оттенком. А как красивы увеличенные листы салата или лесные мхи!
2 Волосы
Казалось бы, одинаковые на первый взгляд человеческие волосы под микроскопом имеют разную толщину, структуру и цвет. Можно сравнить волосы людей и домашнего животного — кошки или собаки, поместив их под стекло микроскопа.
3 Листья и лепестки растений
Микроскоп легко ответит на вопрос ребенка: «Почему крапива жжется?». Все дело в том, что на листе растения есть жгучие волоски, отлично заметные при увеличении!
А любители красоты не устоят перед увеличенными лепестками садовых или полевых цветков — анютиных глазок, васильков, красных роз.
4 Пыльца
«Неужели эти фигурки действительно существуют?» — может спросить юный биолог. Действительно, крошечные частички под стеклом — это разноцветные тела различных форм: одни напоминают круг, другие — многоугольники с шипами. А для того чтобы перенести пыльцу с растения на предметное стеклышко, понадобится мягкая кисточка.
5 Бумага, мех, нитки
Все это под увеличением изменяется причудливым образом: например, кусочек бумажного листа будет выглядеть как серая структура. И мех, и нитки под микроскопом совсем не похожи на то, что мы привыкли видеть невооруженным глазом!
6 Кристаллы поваренной соли, сахар-песок, зернышко кофе
Наверное, интереснее всего выглядят кубики соли — как будто ими можно играть! Да и гранулы сахарного песка поражают своими четкими геометрическими формами.
7 Соскоб налета со стенки аквариума
Этот опыт разъясняет строение зеленых водорослей. Специалисты отмечают, что такое наблюдение может заставить ребят подолгу находиться у микроскопа!
8 Бактерии в зубном налете
Зачем чистить зубы два раза в день? А для того, чтобы во рту было как можно меньше всех этих «палочек», «ниточек», «шариков», которыми изобилует зубной налет. Правда, чтобы увидеть бактерии, налет разводят в капельке воды, предварительно сняв острой зубочисткой или спичкой. Также можно изучить выпавшие молочные зубы, которые хранятся во многих семьях.
9 Грязь под ногтями
А это исследование — просто спасение для тех родителей, которые «воюют» со своими чадами за регулярное мытье рук. Мама и папам, уставшим объяснять, зачем это нужно делать, прекрасно поможет микроскоп.
Воочию увидев, что же скапливается под ногтями, дети незамедлительно побегут в ванную!
10 Муха или другое насекомое
Строение насекомого можно и нужно изучать под микроскопом: конечно, эстетического удовольствия не получишь, зато обретешь новые полезные знания.
Каким бы любознательным ни был ребенок, первое время работать с микроскопом нужно с родителями. Мама и папа должны предупредить, что нельзя баловаться со стеклом, крутить и вертеть винты без необходимости. Также родители могут рассказать об устройстве микроскопа и предназначении каждой детали. Все это «отложится в копилку» сына или дочери и заставит тянуться к новым знаниям.
Микроскопия в домашних условиях
Станислав Яблоков,
Ярославский государственный университет им. П. Г. Демидова
«Наука и жизнь» №2, 2014
Вот уже два года, как я наблюдаю за микромиром у себя дома, и год, как снимаю его на фотокамеру. За это время собственными глазами увидел, как выглядят клетки крови, чешуйки, опадающие с крыльев бабочек, как бьётся сердце улитки. Конечно, многое можно было бы узнать из учебников, видеолекций и тематических сайтов. Но при этом не было бы ощущения присутствия, близости к тому, что не видно невооружённым глазом. Что это не просто слова из книжки, а личный опыт. Опыт, который сегодня доступен каждому.
Что купить
Театр начинается с вешалки, а микросъёмка с покупки оборудования, и прежде всего — микроскопа. Одна из основных его характеристик — набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива.
Детёныш улитки. Увеличение 40×
Не всякий биологический образец хорош для просмотра при большом увеличении. Связано это с тем, что чем больше увеличение оптической системы, тем меньше глубина резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения с увеличением от 10–20 до 900–1000×. Иногда бывает оправданно добиться увеличения 1500× (окуляр 15 и объектив 100×). Большее увеличение бессмысленно, так как более мелкие детали не позволяет видеть волновая природа света.
Лист клевера. Увеличение 100×. Некоторые клетки содержат тёмно-красный пигмент
Следующий немаловажный момент — тип окуляра. «Сколькими глазами» вы хотите рассматривать изображение? Обычно выделяют монокулярную, бинокулярную и тринокулярную его разновидности. В случае монокуляра придётся щуриться, утомляя глаз при длительном наблюдении. В бинокуляр смотрят обоими глазами (не следует путать его со стереомикроскопом, дающим объёмное изображение). Для фото- и видеосъёмки микрообъектов понадобится «третий глаз» — насадка для установки аппаратуры. Многие производители выпускают специальные камеры для своих моделей микроскопов, но можно использовать и обычный фотоаппарат, купив к нему переходник.
Лист земляники. Увеличение 40×
Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры объективов. Световой пучок от осветителя, преобразованный в оптическом устройстве — конденсоре, освещает препарат. В зависимости от характера освещения существует несколько способов наблюдения, самые распространённые из которых — методы светлого и тёмного поля. В первом, самом простом, знакомом многим ещё со школы, препарат освещают равномерно снизу. При этом через оптически прозрачные детали препарата свет распространяется в объектив, а в непрозрачных он поглощается и рассеивается. На белом фоне получается тёмное изображение, отсюда и название метода. С тёмнопольным конденсором всё иначе. Световой пучок, выходящий из него, имеет форму конуса, лучи в объектив не попадают, а рассеиваются на непрозрачном препарате, в том числе и в направлении объектива. В итоге на тёмном фоне виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных малоконтрастных объектов. Поэтому, если вы планируете расширить набор методов наблюдения, стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсора тёмного поля, тёмнопольной диафрагмы, устройств фазового контраста, поляризаторов и т. п.
Оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения — аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы для профессиональных исследований. Сильные объективы (с увеличением, например, 100×) имеют числовую апертуру больше 1 при использовании иммерсии, масла с высоким показателем преломления, раствора глицерина (для УФ-области) или просто воды. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионной жидкости. Её показатель преломления обязательно должен соответствовать конкретному объективу.
Иногда следует обратить внимание на устройство предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который ярче и греется меньше. Микроскопы тоже имеют индивидуальные особенности. Каждая дополнительная опция — это добавка в цене, поэтому выбор модели и комплектации остаётся за потребителем.
Сегодня нередко покупают недорогие микроскопы для детей, монокуляры с небольшим набором объективов и скромными параметрами. Они могут послужить хорошей отправной точкой не только для исследования микромира, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже стоит купить более серьёзное устройство.
Как смотреть
Можно купить далеко не дешёвые наборы готовых препаратов, но тогда не таким ярким будет ощущение личного участия в исследовании, да и наскучат они рано или поздно. Поэтому следует позаботиться и об объектах для наблюдения, и о доступных средствах для подготовки препаратов.
Наблюдение в проходящем свете предполагает, что исследуемый объект достаточно тонок. Даже кожура ягоды или фрукта слишком толста, поэтому в микроскопии исследуют срезы. В домашних условиях их делают обычными бритвенными лезвиями. Чтобы не смять кожуру, её помещают между кусочками пробки или заливают парафином. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, а в идеале следует работать с моноклеточным слоем ткани — несколько слоёв клеток создают нечёткое сумбурное изображение.
Крыло жучка бибиониды. Увеличение 400×
Исследуемый препарат помещают на предметное стекло и в случае необходимости закрывают покровным. Купить стёкла можно в магазине медицинской техники. Если препарат плохо прилегает к стеклу, его фиксируют, слегка смачивая водой, иммерсионным маслом или глицерином. Не всякий препарат сразу открывает свою структуру, иногда ему нужно «помочь», подкрасив его форменные элементы: ядра, цитоплазму, органеллы. Неплохими красителями служат йод и «зелёнка». Йод достаточно универсальный краситель, им можно окрашивать широкий спектр биологических препаратов.
При выезде на природу следует запастись баночками для набора воды из ближайшего водоёма и маленькими пакетиками для листьев, высохших остатков насекомых и т. п.
Что смотреть
Микроскоп приобретён, инструменты закуплены — пора начинать. И начать следует с самого доступного — например, кожуры репчатого лука. Тонкая сама по себе, подкрашенная йодом, она обнаруживает в своём строении чётко различимые клеточные ядра. Этот опыт, хорошо знакомый со школы, и стоит провести первым. Луковую кожуру нужно залить йодом на 10–15 минут, после чего промыть под струёй воды.
Кожица лука. Увеличение 1000×. Окраска йодом. На фотографии видно клеточное ядро
Кожица лука. Увеличение 1000×. Окраска азур-эозином. На фотографии в ядре заметно ядрышко
Кроме того, йод можно использовать для окраски картофеля. Срез необходимо сделать как можно более тонким. Буквально 5–10 минут его пребывания в йоде проявят пласты крахмала, который окрасится в синий цвет.
Картофель. Синие пятна — зёрна крахмала. Увеличение 100×. Окраска йодом
На балконах часто скапливается большое количество трупиков летающих насекомых. Не торопитесь от них избавляться: они могут послужить ценным материалом для исследования. Как видно из фотографий, вы обнаружите, что на крыльях насекомых есть волоски, которые защищают их от намокания. Большое поверхностное натяжение воды не позволяет капле «провалиться» сквозь волоски и коснуться крыла.
Плёнка на спине таракана. Увеличение 400×
Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На снимках отчётливо видно, что это не пыль, а чешуйки с крыльев. Они имеют разную форму и довольно легко отрываются.
Чешуйки с крыльев моли. Увеличение 400×
Кроме того, с помощью микроскопа можно изучить строение конечностей насекомых и пауков, рассмотреть, например, хитиновые плёнки на спине таракана. И при должном увеличении убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.
Крыло бабочки боярышницы. Увеличение 100×
Не менее интересный объект для наблюдения — кожура ягод и фруктов. Однако либо её клеточное строение может быть неразличимым, либо её толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем получится хороший препарат: перебрать разные сорта винограда, чтобы найти тот, у которого красящие вещества кожуры имели бы интересную форму, или сделать несколько срезов кожицы сливы, добиваясь моноклеточного слоя. В любом случае вознаграждение за проделанную работу будет достойным.
Кожура сливы. Увеличение 1000×
Ещё более доступны для исследования трава, водоросли, листья. Но, несмотря на повсеместную распространённость, выбрать и приготовить из них хороший препарат бывает непросто. Самое интересное в зелени — это, пожалуй, хлоропласты. Поэтому срез должен быть исключительно тонким.
Хлоропласты в клетках травы. Увеличение 1000×
Приемлемой толщиной нередко обладают зелёные водоросли, встречающиеся в любых открытых водоёмах. Там же можно найти плавучие водоросли и микроскопических водных обитателей — мальков улитки, дафний, амёб, циклопов и туфелек. Маленький детёныш улитки, оптически прозрачный, позволяет разглядеть у себя биение сердца.
Хлоропласты в клетках водоросли. Увеличение 1000×
Сам себе исследователь
После изучения простых и доступных препаратов захочется усложнить технику наблюдения и расширить класс исследуемых объектов. Для этого понадобится и специальная литература, и специализированные средства, свои для каждого типа объектов, но всё-таки обладающие некоторой универсальностью. Например, метод окраски по Граму, когда разные виды бактерий начинают различаться по цвету, можно применить и для других, не бактериальных, клеток. Близок к нему и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из его компонентов — азура и эозина. Их можно купить в специализированных магазинах либо заказать в интернете. Если раздобыть краситель не удастся, можно попросить у лаборанта, делающего вам анализ крови в поликлинике, стёклышко с окрашенным её мазком.
Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: эозинофил на фоне эритроцитов
Продолжая тему исследования крови, следует упомянуть камеру Горяева — устройство для подсчёта количества клеток крови и оценки их размеров. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.
Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: слева — моноцит, справа — лимфоцит
В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить деньги. Это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Находятся и те, кто отводит свой взор от экранов и направляет его далеко в космос, приобретая телескоп. Микроскопия может стать интересным хобби, а для кого-то даже и искусством, средством самовыражения. Глядя в окуляр микроскопа, проникают глубоко внутрь той природы, часть которой мы сами.
Словарик к статье
Иммерсия — прозрачная жидкость с показателем преломления n > 1. В неё погружают препарат и объектив микроскопа, увеличивая его апертуру и тем самым повышая разрешающую способность.
Планахроматический объектив — объектив с исправленной хроматической аберрацией, который создаёт плоское изображение по всему полю. Обычные ахроматы и апохроматы (аберрации исправлены для двух и для трёх цветов соответственно) дают криволинейное поле, которое исправить невозможно.
Фазовый контраст — метод микроскопических исследований, основанный на изменении фазы световой волны, прошедшей сквозь прозрачный препарат. Фаза колебания не видна простым глазом, поэтому специальная оптика — конденсор и объектив — превращает разность фаз в негативное или позитивное изображение.
Моноциты — одна из форм белых клеток крови.
Хлоропласты — зелёные органеллы растительных клеток, отвечающие за фотосинтез.
Эозинофилы — клетки крови, играющие защитную роль при аллергических реакциях.
«Наука и жизнь» о микросъёмке:
Микроскоп «Аналит» — 1987, №1.
Ошанин С. Л. С микроскопом у пруда. — 1988, №8.
Ошанин С. Л. Невидимая миру жизнь. — 1989, №6.
Милославский В. Ю. Домашняя микрофотография. — 1998, №1.
Мологина Н. Фотоохота: макро и микро. — 2007, №4.
Микроскоп дома: как правильно выбирать и что с ним можно делать
Даже самый простой микроскоп, который можно купить домой, может оказаться новой любимой игрушкой — не только для детей, но и для родителей. Главное, понять, какой всё-таки нужен именно вам. На что обращать внимание при выборе микроскопа и что потом смотреть — рассказывает биолог и популяризатор науки Антон Захаров.
Хороший микроскоп должен быть металлическим и тяжёлым. Пластиковые микроскопы почти наверняка не прослужат долго, и вряд ли у них будет нормальное качество изображения. Это очень важный критерий, так как в руках активного начинающего исследователя микроскоп будет испытывать нешуточную нагрузку, и это нормально. Особенно страдать будут регулирующие винты. А у пластиковых микроскопов они не очень надёжные, из-за этого картинка будет плохо фокусироваться. У профессионального микроскопа, кстати, таких винтов должно быть два: макро и микро. Но бывают хорошие микроскопы и с одним винтом.
Помните, что вам не нужен микроскоп с увеличением больше 400 раз. Даже выпускники биологических вузов не всегда умеют нормально работать с такими увеличениями. На нашей кафедре, например, мы такого никогда не делали. Так что увеличение в 400 раз — то что нужно. Эти 400 раз будут складываться из обычного окуляра и сменных насадок с объективами, достаточно будет двух — увеличивающих в 10 и 40 раз. Ещё одна важная вещь — хорошая подсветка. В старых микроскопах для этого использовались зеркала и настольные лампы, а сейчас у большинства есть встроенная подсветка. Лучше пусть она будет диодной.
Перед покупкой серьёзного микроскопа стоит задуматься, нужен ли вам такой или есть альтернативы. Один из вариантов — бинокуляр с увеличением от 20 до 40 раз. Более того, многие объекты даже удобнее смотреть именно при таком увеличении. Для нормального микроскопа препарат должен быть либо с самого начала очень маленьким (например, одноклеточные амёбы или другие микроскопические организмы), либо нужно делать тоненькие срезы, что тоже требует определённого умения. Ребёнку с этим справиться будет непросто. А в бинокуляр можно смотреть и на объёмные препараты. Ещё один вполне достойный вариант: специальная увеличивающая насадка на смартфон. Они бывают разные, и качество некоторых очень даже приемлемое для непрофессионалов. Хотя для многих детей настоящий микроскоп может быть намного привлекательнее просто из-за своей необычности.
Что смотреть под микроскопом
Итак, вы наконец-то решили, какой микроскоп лучше всего вам подходит. И сразу возникает вопрос, а что же теперь с этим микроскопом делать.
1. Готовые препараты. В комплекте со многими микроскопами идут наборы готовых препаратов, а иногда и описаний этих препаратов, но это не принципиально, их при желании можно найти и в интернете. Такие наборы продаются и отдельно. Главное — это не отправлять ребёнка в самостоятельно плавание без инструкции. Обязательно нужно объяснить ему, что он видит перед собой. Это можно сделать самому, если остались школьные знания, а можно воспользоваться помощью бумажных или электронных методичек.
16 гифок, которые влюбляют в биологию
2. Самодельные препараты. Когда Антони ван Левенгук в XVII веке изобрёл первый микроскоп, он старался изучить с его помощью всё что только можно. Каплю воды из реки или лужи около дома, строение ткани, зубной налёт, кончики своих ногтей. Что мешает вам поступить так же?
Единственное, в современный микроскоп хорошо видно только очень маленькие объекты или тонкие срезы объектов покрупнее. Но готовить такие срезы можно и самому — остро заточенным ножом или острой бритвой, например, закреплённой в спичечном коробке. Попробуйте отрезать максимально тонкие кусочки разных овощей или фруктов. Растительные клетки довольно крупные, поэтому в таких препаратах часто можно рассмотреть некоторые клеточные органеллы: клеточную стенку, хлоропласты и ядро. Ещё можно делать срезы и кусочков мяса или других продуктов из вашей кухни. Главное, помните, что для рассмотрения самодельных препаратов их нужно помещать в каплю воды.
3. Неживые объекты. Возьмите ниточку с одежды, волосок, соберите немного пыли, и с помощью микроскопа вы узнаете много интересного про их структуру. Но ещё раз напомню, что если объект слишком большой, то надо или сделать его срез, или воспользоваться бинокуляром.
4. Кора пробкового дерева. Повторите исследование, в результате которого появился термин «клетка», рассмотрите срез коры пробкового дерева — для этого подойдёт обычная винная пробка.
5. Кровь. Если ребёнок или кто-то в семье порежет палец, можно эту неприятную ситуацию развернуть в полезное для науки русло. Соберите капельку крови и рассмотрите её под микроскопом.
6. Растения. Сделайте срезы не только съедобных овощей, посмотрите на срезы разных частей цветков.
7. Плесень. Оставьте кусок хлеба, чтобы он покрылся плесенью, и рассмотрите эту плесень.
8. Слюна. Аккуратно соскребите зубочисткой или чистой ватной палочкой (продезинфицируйте её вначале!) клетки с внутренней стороны щёки.
9. Паутина. Зафиксируйте её при помощи лака для волос или для ногтей, а потом аккуратно положите под микроскоп.
10. Сахар, соль, мука, крахмал, водяные знаки на купюрах – в общем всё, что попадётся на глаза. Ведь единственная граница научного исследования — это воображение исследователя.
Микроскопия в домашних условиях
Микроскопия в домашних условиях
Подсчёт эритроцитов в камере Горяева. Увеличение: 100×.
Автор
Редакторы
Статья на конкурс «био/мол/текст»: Повышенный уровень лейкоцитов, бактериальная инфекция, картофель содержит крахмал, насекомые переносят заболевания эти и другие похожие высказывания приходится слышать отовсюду. Каждый день с экранов телевизоров, из уст знакомых, с полос газет и журналов нам в мозг поступает одна и та же информация. Информация, которая, как может показаться, является уделом лишь специалистов медиков и биологов. Ведь именно они касаются этих вопросов в своей повседневной жизни. Простому же человеку достаются лишь только выводы из тех или иных исследований, сухие слова, не обладающие наглядностью. В этой статье я постараюсь рассказать просто о сложном. О том, как каждый может приблизить к себе неуловимый, на первый взгляд, мир клеток и микроорганизмов.
«Био/мол/текст»-2013
Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Своя работа».
Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.
Вот уже два года, как я наблюдаю за этим миром у себя дома, и год, как делаю фотоснимки. За это время я успел увидеть собственными глазами, какие бывают клетки крови, что опадает с крыльев бабочек и молей, как бьётся сердце у улитки. Конечно, многое можно было бы почерпнуть из учебников, видеолекций и с тематических веб-сайтов. Единственное, что осталось бы не почерпнутым — это ощущение присутствия и близости к тому, чего не видно невооружённым глазом. То, что прочитано в книге или увидено в телепередаче, скорее всего, сотрется из памяти в весьма сжатые сроки. Что увидено лично в объектив микроскопа — останется с тобой навсегда. И останется не столько сам образ увиденного, сколько понимание, что мир устроен именно так, а не иначе. Что это не просто слова из книжки, а личный опыт. Опыт, который в наше время доступен каждому.
Что купить?
Театр начинается с вешалки, а исследование — с покупки оборудования. В нашем случае это будет микроскоп, ибо в лупу много не разглядишь. Из основных характеристик микроскопа «для домашних нужд» стоит выделить, конечно же, набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива. Не всякий биологический образец хорош для исследования на больших увеличениях. Связано это с тем, что большее увеличение оптической системы предполагает меньшую глубину резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения во всем диапазоне увеличения: 10–20×, 40–60×, 100–200×, 400–600×, 900–1000×. Иногда бывает оправдано увеличение 1500×, достигающееся при покупке окуляра 15× и объектива 100×. Всё, что увеличивает сильнее, разрешающей способности заметно не прибавит, так как на увеличениях около 2000–2500× уже близок так называемый «оптический предел», обусловленный дифракционными явлениями.
Следующим немаловажным моментом является тип насадки. Обычно выделяют монокулярную, бинокулярную и тринокулярную разновидности. Принцип классификации основывается на том, «сколькими глазами» вы хотите смотреть на объект. В случае монокулярной системы вам придётся щуриться, постоянно меняя глаза от усталости при длительном наблюдении. Здесь вам на помощь придёт бинокулярная насадка, в которую, как и следует из её названия, можно глядеть обоими глазами. В целом, это более благоприятно скажется на самочувствии ваших глаз. Не следует путать бинокуляр со стереомикроскопом. Последний позволяет добиться объёмного восприятия наблюдаемого объекта за счёт наличия двух объективов, в то время как бинокулярные микроскопы просто подают на оба глаза одно и то же изображение. Для фото- и видеосъёмки микрообъектов понадобится «третий глаз», а именно насадка для установки камеры. Многие производители выпускают специальные камеры для своих моделей микроскопов, хотя можно использовать и обычный фотоаппарат (правда, при этом придётся купить переходник).
Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры соответствующих объективов. Канули те времена, когда препарат исследовали в отражённом от зеркала свете. Сейчас микроскопы представляют собой комплексные оптико-механо-электрические приборы, в которых всецело используются достижения научно-технического прогресса. В современных устройствах имеется своя лампочка, свет от которой распространяется через специальное устройство — конденсор, — которое и освещает препарат. В зависимости от типа конденсора можно выделить различные способы наблюдения, самыми популярными из которых являются методы светлого и тёмного поля. Первый метод, знакомый многим ещё со школы, предполагает, что препарат освещается равномерно снизу. При этом в тех местах, где препарат оптически прозрачен, свет распространяется от конденсора в объектив, а в непрозрачной среде свет поглощается, приобретает окраску и рассеивается. Поэтому на белом фоне получается тёмное изображение — отсюда и название метода.
С темнопольным конденсором всё иначе. Он устроен так, что лучи света, выходящие из него, направлены в разные стороны, кроме непосредственно отверстия объектива. Поэтому они проходят сквозь оптически прозрачную среду, не попадая в поле зрения наблюдателя. С другой стороны, лучи, попавшие на непрозрачный объект, рассеиваются на нём во все стороны, в том числе и в направлении объектива. Поэтому в итоге на тёмном фоне будет виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных объектов, которые на светлом фоне не являются контрастными. По умолчанию большинство микроскопов являются светлопольными. Поэтому, если вы планируете расширить набор методов наблюдения, то стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсоров, устройств фазового контраста, поляризаторов и т.п.
Как известно, оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения — аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы. Они используются при профессиональных исследованиях и имеют адекватную цену. Объективы с большим увеличением (например, 100×) имеют числовую апертуру больше 1, что предполагает использование масла при наблюдении — так называемая иммерсия. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионном масле. Его показатель преломления обязательно должен соответствовать вашему конкретному объективу.
Конечно, это не весь список параметров, которые следует учитывать при покупке микроскопа. Иногда бывает важно обратить внимание на устройство и расположение предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который светит ярче и греется меньше. Также микроскопы могут иметь индивидуальные особенности. Но основное, что стоило бы сказать об их устройстве, пожалуй, сказано. Каждая дополнительная опция — это добавка к цене, поэтому выбор модели и комплектации — это удел конечного потребителя.
В последнее время наметилась тенденция покупки микроскопов для детей. Такие устройства обычно являются монокулярами с небольшим набором объективов и скромными параметрами, стоят недорого и могут послужить хорошей отправной точкой не только для непосредственно наблюдений, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже можно будет купить более серьёзное устройство на основании выводов, сделанных при работе с «бюджетной» моделью.
Как смотреть?
Любительское наблюдение не предполагает исключительных навыков ни в работе с микроскопом, ни в подготовке препаратов. Конечно, можно купить далеко не дешёвые наборы уже готовых препаратов, но тогда не таким ярким будет ощущение вашего личного присутствия в исследовании, да и готовые препараты рано или поздно наскучат. Поэтому, купив микроскоп, стоит задуматься о реальных объектах для наблюдения. Кроме того, вам понадобятся хоть и специальные, но доступные средства для подготовки препаратов.
Наблюдение в проходящем свете предполагает, что исследуемый объект является достаточно тонким. Даже не каждая кожура с ягоды или фрукта сама по себе обладает необходимой толщиной, поэтому в микроскопии исследуют срезы. В домашних условиях достаточно адекватные срезы можно делать обычными лезвиями для бритья. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, что во многом повысит дифференцируемость объектов препарата. В идеале стоит работать с моноклеточным слоем ткани, ибо несколько слоёв клеток, наложенных друг на друга, создают нечёткое и сумбурное изображение.
Исследуемый препарат помещается на стекло предметное и, в случае необходимости, накрывается стеклом покровным. Поэтому, если в комплекте к микроскопу стёкла не прилагаются, их следует купить отдельно. Сделать это можно в ближайшем магазине медицинской техники. Однако не каждый препарат хорошо прилегает к стеклу, поэтому применяют методы фиксации. Основными являются фиксация огнём и спиртом. Первый метод требует определённого навыка, так как можно попросту «спалить» препарат. Второй способ зачастую более оправдан. Чистый спирт достать не всегда возможно, поэтому в аптеке в качестве заменителя можно приобрести антисептик, который, по сути, является спиртом с примесями. Там же стоит купить йод и зелёнку. Эти привычные для нас средства дезинфекции на деле оказываются ещё и хорошими красителями для препаратов. Ведь не всякий препарат открывает свою сущность при первом взгляде. Иногда ему нужно «помочь», подкрасив его форменные элементы: ядро, цитоплазму, органеллы.
Для взятия образцов крови следует приобрести скарификаторы, пипетки и вату. Всё это есть в продаже в медицинских магазинах и аптеках. Кроме того, для сбора объектов из дикой природы следует запастись маленькими пакетиками и баночками. Брать с собой баночку для набора воды из ближайшего водоёма при выезде на природу должно стать у вас хорошей привычкой.
Что смотреть?
Микроскоп приобретён, инструменты закуплены — пора начинать. И начать следует с самого доступного. Что может быть доступнее кожуры репчатого лука (рис. 1 и 2)? Являясь тонкой сама по себе, кожура лука, будучи подкрашенной йодом, обнаруживает в своём строении чётко дифференцируемые ядра. Этот опыт, хорошо знакомый со школы, пожалуй, и стоит провести первым. Саму кожуру лука нужно залить йодом и оставить окрашиваться на 10–15 минут, после чего нужно промыть её под струёй воды.
Кроме того, йод можно использовать для окраски картофеля (рис. 3). Не стоит забывать, что срез необходимо делать как можно более тонким. Буквально 5–10 минут пребывания среза картофеля в йоде проявят пласты крахмала, которые окрасятся в синий цвет. Йод является достаточно универсальным красителем. Им можно окрашивать широкий спектр препаратов.
Рисунок 1. Кожица лука (увеличение: 1000×). Окраска йодом. На фотографии дифференцируется ядро в клетке.
Фотография автора статьи.
Рисунок 2. Кожица лука (увеличение: 1000×). Окраска Азур-Эозином. На фотографии в ядре дифференцируется ядрышко.
Фотография автора статьи.
Рисунок 3. Зерна крахмала в картофеле (увеличение: 100×). Окраска йодом.
Фотография автора статьи.
Это явление называется гидрофобностью. Подробно мы о нем говорили в статье «Физическая водобоязнь». — Ред.
Рисунок 4. Крыло божьей коровки (увеличение: 400×).
Фотография автора статьи.
Рисунок 5. Крыло бибионида (увеличение: 400×).
Фотография автора статьи.
Рисунок 6. Крыло бабочки боярышницы (увеличение: 100×).
Фотография автора статьи.
Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На фотографиях отчётливо видно, что этой пылью являются чешуйки с их крыльев (рис. 7). Они имеют разную форму и достаточно легки на отрыв.
Кроме того, можно поверхностно изучить строение конечностей членистоногих (рис. 8), рассмотреть хитиновые плёнки — например, на спине таракана (рис. 9). При должном увеличении можно убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.
Рисунок 7. Чешуйки с крыльев моли (увеличение: 400×).
Фотография автора статьи.
Рисунок 8. Конечность паука (увеличение: 100×).
Фотография автора статьи.
Рисунок 9. Плёнка на спине таракана (увеличение: 400×).
Фотография автора статьи.
Следующее, что стоило бы понаблюдать — это кожура ягод и фруктов (рис. 10 и 11). Не все фрукты и ягоды обладают приемлемой для наблюдения в микроскоп кожурой. Либо её клеточное строение может быть не дифференцируемым, либо толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем вы получите хороший препарат. Вам придётся перебрать разные сорта винограда — например, для того, чтобы найти тот, у которого красящие вещества в кожуре имели бы «приятную для глаза» форму, или сделать несколько срезов кожицы сливы, пока не добьётесь моноклеточного слоя. В любом случае, вознаграждение за проделанную работу будет достойным.
Рисунок 10. Кожура чёрного винограда (увеличение: 1000×).
Фотография автора статьи.
Рисунок 11. Кожура сливы (увеличение: 1000×).
Фотография автора статьи.
Рисунок 12. Лист клевера (увеличение: 100×). Некоторые клетки содержат тёмнокрасный пигмент.
Фотография автора статьи.
Достаточно доступным для исследования объектом является зелень: трава, водоросли, листья (рис. 12 и 13). Но, несмотря на повсеместную распространённость, выбрать и приготовить хороший образец бывает не так-то просто.
Самым интересным в зелени являются, пожалуй, хлоропласты (рис. 14 и 15). Поэтому срез должен быть исключительно тонким. Нередко приемлемой толщиной обладают зелёные водоросли, встречающиеся в любых открытых водоёмах.
Рисунок 13. Лист земляники (увеличение: 40×).
Фотография автора статьи.
Рисунок 14. Хлоропласты в клетках травы (увеличение: 1000×).
Фотография автора статьи.
Рисунок 15. Хлоропласты в клетках водоросли (увеличение: 1000×).
Фотография автора статьи.
Там же вы встретите и плавучие водоросли и других водных микроорганизмов (рис. 16). Вам также может посчастливиться встретить малька улитки или другого животного, живущего в водоёме (рис. 17 и 18). Маленький детёныш улитки, будучи достаточно оптически прозрачным, позволяет разглядеть у себя биение сердца (видео 1).
Рисунок 16. Плавающая водоросль со жгутиком (увеличение: 400×).
Фотография автора статьи.
Рисунок 17. Детёныш улитки (увеличение: 40×).
Фотография автора статьи.
Рисунок 18. Мазок крови. Окраска Азур-Эозином по Романовскому (увеличение: 1000×). На фотографии эозинофил на фоне эритроцитов.
Фотография автора статьи.
Сам себе учёный
Видео 1. Биение сердца улитки (увеличение оптического микроскопа 100×).
После исследования простых и доступных препаратов естественным желанием является усложнение техник наблюдения и расширение класса изучаемых объектов. Для этого, во-первых, понадобится литература по специальным методам исследования, а, во-вторых, специальные средства. Эти средства, хотя и являются своими для каждого типа объектов, всё-таки обладают некоторой общностью и универсальностью. Например, всеобще известный метод окраски по Граму, когда разные виды бактерий после окраски дифференцируются по цветам, может быть применён и при окраске других, не бактериальных, клеток. Близким к нему по сути является и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из таких красящих веществ, как азур и эозин. Все красители можно купить в специализированных медико-биологических магазинах, либо заказать в интернете. Если же по каким-то причинам вы не можете достать краситель для крови, можно попросить лаборанта, делающего вам анализ крови в больнице, приложить к анализу стёклышко с окрашенным мазком вашей крови.
Продолжая тему исследования крови, нельзя не упомянуть камеру Горяева — устройство для подсчёта форменных элементов крови. Будучи важным инструментом для оценки количества эритроцитов в крови ещё в те времена, когда не было устройств для автоматического анализа её состава, камера Горяева также позволяет измерять размеры объектов благодаря нанесённой на неё разметке с известными размерами делений. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.
Заключение
В данной статье я постарался рассмотреть основные моменты, связанные с выбором микроскопа, подручных средств и основные классы объектов для наблюдения, которые нетрудно встретить в быту и на природе. Как уже было сказано, специальные средства наблюдения предполагают наличие хотя бы начальных навыков работы с микроскопом, поэтому их обзор выходит за рамки данной статьи. Как видно из фотографий, микроскопия может стать приятным хобби, а может быть, для кого-то даже и искусством.
В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить собственные деньги. Из развлекательных соображений это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Но находятся и те, кто отводит свой взор от экранов и направляет его либо далеко в космос, приобретая телескоп, либо, смотря в окуляр микроскопа, проникают взглядом глубоко внутрь. Внутрь той природы, частью которой мы являемся.