Что потребляет клетка во время обмена веществ
Основные закономерности метаболических процессов в организме человека. Часть 1.
Метаболизм – обмен веществ и энергии — представляет собой по классическим определениям, с одной стороны, обмен веществами и энергией между организмом и окружающей средой, а, с другой стороны, совокупность процессов превращения веществ и трансформации энергии, происходящих непосредственно в самих живых организмах. Как известно, обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи. В обмене веществ, контролируемом многоуровневыми регуляторными системами, участвует множество ферментных каскадов, обеспечивающих совокупность химических реакций, упорядоченных во времени и пространстве. Данные биохимические реакции, детерминированные генетически, протекают последовательно в строго определенных участках клеток, что, в свою очередь обеспечивается принципом компартментации клетки. В конечном итоге в процессе обмена поступившие в организм вещества превращаются в собственные специфические вещества тканей и в конечные продукты, выводящиеся из организма. В процессе любых биохимических трансформаций освобождается и поглощается энергия.
Клеточный метаболизм выполняет четыре основные специфические функции, а именно: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэнергетических) химических соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез из этих предшественников белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.
Поскольку первоначальные представления об обмене веществ возникли в связи с изучением процессов обмена между организмом и внешней средой и лишь впоследствии эти представления расширились до понимания путей трансформации веществ и энергии внутри организма, до настоящего времени принято выделять соответственно внешний, или общий, обмен веществ и внутренний или промежуточный, обмен веществ. В свою очередь как во внутреннем, так и во внешнем обмене веществ различают структурный (пластический) и энергетический обмен. Под структурным обменом понимают взаимные превращения различных высоко- и низкомолекулярных соединений в организме, а также их перенос (транспорт) внутри организма и между организмом и внешней средой. Под энергетическим обменом понимают высвобождение энергии химических связей молекул, образующейся в ходе реакций и ее превращение в тепло (большая часть), а также использование энергии на синтез новых молекул, активный транспорт, мышечную работу (меньшая часть). В процессе обмена веществ часть конечных продуктов химических реакций выводится во внешнюю среду, другая часть используется организмом. В этом случае конечные продукты органического обмена накапливаются или расходуются в зависимости от условий существования организма, называясь запасными или резервными веществами.
Как указывалось выше совокупность химических превращений веществ, которые происходят непосредственно в организме, начиная с момента их поступления в кровь и до момента выделения конечных продуктов обмена из организма, называют промежуточным обменом (промежуточным метаболизмом). Промежуточный обмен может быть разделен на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизмом называют ферментативное расщепление крупных органических молекул, осуществляемое у всех высших организмов, как правило, окислительным путем. Катаболизм сопровождается освобождением энергии, заключенной в химических связях органических молекул, и резервированием ее в форме энергии фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Анаболизм, напротив, представляет собой ферментативный синтез крупномолекулярных клеточных компонентов, таких, как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их биосинтетических предшественников из более простых соединений. Анаболические процессы происходят с потреблением энергии. Процессы катаболизма и анаболизма происходят в клетках одновременно, неразрывно связаны друг с другом и являются обязательными компонентами одного общего процесса — метаболизма, в котором превращения веществ теснейшим образом переплетены с превращениями энергии. Катаболические и анаболические реакции различаются, как правило, локализацией в клетке. Например, окисление жирных кислот до углекислого газа и воды осуществляется с помощью набора митохондриальных ферментов, тогда как синтез жирных кислот катализирует другая система ферментов, находящихся в цитозоле. Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно. При этом все превращения органических веществ, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии.
На второй стадии катаболизма продуктами химических реакций становятся еще более простые молекулы, унифицированные для углеводного, белкового и липидного обмена. по своему типу (гликолиз, катаболизм аминокислот, β-окисление жирных кислот соответственно). Принципиальным является то, что на второй стадии катаболизма образуются продукты, которые являются общими для обмена исходно разных групп веществ. Эти продукты представляют собой ключевые химические соединения, соединяющие разные пути метаболизма. К таким соединениям относятся, например, пируват (пировиноградная кислота), образующийся при распаде углеводов, липидов и многих аминокислот, ацетил-КоА, объединяющий катаболизм жирных кислот, углеводов и аминокислот, a-кетоглутаровая кислота, оксалоацетат (щавелевоуксусная кислота), фумарат (фумаровая кислота) и сукцинат (янтарная кислота), образующиеся при трансформации аминокислот. Продукты, полученные на второй стадии катаболизма, вступают в третью стадию, которая известна как цикл трикарбоновых кислот (терминальное окисление, цикл лимонной кислоты, цикл Кребса). На третьем этапе ацетил-КоА и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат, подвергаются окислению в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2. Именно в ходе второй и третьей стадий катаболизма освобождается и аккумулируется в виде АТФ практически вся энергия химических связей подвергнутых диссимиляции веществ. При этом осуществляется перенос электронов от восстановленных нуклеотидов на кислород через дыхательную цепь, сопровождающийся образованием конечного продукта – молекулы воды. Транспорт электронов в дыхательной цепи сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.
В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма. Тем не менее, только часть получаемой при окислении белков, жиров и углеводов энергии используется для синтеза АТФ, другая, значительно большая, превращается в теплоту. Так, при окислении углеводов 22, 7% энергии химических связей глюкозы в процессе окисления используется на синтез АТФ, а 77, 3% в виде тепла рассеивается в тканях. Аккумулированная в АТФ энергия используемая в дальнейшем для механической работы, химических, транспортных, электрических процессов в конечном счете тоже превращается в теплоту. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.
Общий баланс энергии организма определяют на основании калорийности вводимых пищевых веществ и количества выделенного тепла, которое может быть измерено или рассчитано. При этом надо учитывать, что величина калорийности, получаемая при лабораторной калориметрии, может отличаться от величины физиологической калорической ценности, поскольку некоторые вещества в организме не сгорают полностью, а образуют конечные продукты обмена, способные к дальнейшему окислению. В первую очередь это относится к белкам, азот которых выделяется из организма главным образом в виде мочевины, сохраняющей некоторый потенциальный запас калорий. Очевидно, что калорическая ценность, дыхательный коэффициент и величина теплообразования для разных веществ различны. Физиологическая калорическая ценность (в ккал/г) составляет для углеводов — 4, 1; липидов — 9, 3; белков — 4, 1; величина теплообразования (в ккал на 1 литр потребленного кислорода) для углеводов составляет 5, 05; липидов — 4, 69; белков — 4, 49.
Процесс анаболизма по аналогии с катаболическими процессами также проходит три стадии. При этом исходными веществами для анаболических процессов служат продукты второй стадии и промежуточные соединения третьей стадии катаболизма. Таким образом вторая и третья стадии катаболизма являются в то же время первой, исходной стадией анаболизма и химические реакции, протекающие в данном месте и в данное время, выполняют по сути двойную функцию. С одной стороны, они являются основой завершающего этапа катаболизма, а с другой — служат инициацией для анаболических процессов, поставляя вещества-предшественники для последующих стадий ассимиляции. Подобным образом, например, начинается синтез белка. Исходными реакциями этого процесса можно считать образование некоторых a-кетокислот. На следующей, второй стадии в ходе реакций аминирования или трансаминирования эти кетокислоты превращаются в аминокислоты, которые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых кислот, липидов и полисахаридов. Тем не менее следует подчеркнуть, что пути анаболизма не являются простым обращением процессов катаболизма. Это связано прежде всего с энергетическими особенностями химических реакций. Некоторые реакции катаболизма практически необратимы, поскольку их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. Поэтому в ходе эволюции были выработаны другие, специфические для анаболизма реакции, где синтез олиго- и полимерных соединений сопряжен с затратой энергии макроэргических соединений, прежде всего – АТФ.
Статья добавлена 31 мая 2016 г.
Биология
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Метаболизм
Всякая живая клеточная структура постоянно осуществляет различные реакции, которые обеспечивают все основные процессы, необходимые для нормального существования. Так обеспечивается постоянство условий внутренней среды биологической системы или гомеостаз. При нарушении этих условий происходит сбой в работе всей системы, что способно привести к гибели не только отдельной клетки, но и всего организма. Соответственно, все процессы ориентированы на поддержание именно гомеостаза.
С целью реализации трудоемких биохимических реакций требуются различные соединения, а также энергия, получаемые организмом при метаболизме.
Получается, что ассимиляция и диссимиляция – это взаимозависимые процессы, протекающие синхронно.
Любой организм, вследствие питания, получает извне различные вещества и микроэлементы, используемые в процессе ассимиляции.
Ассимиляция – это процесс, состоящий в формировании соединений, а также составных частей клетки. Данные реакции иначе именуются анаболизм или пластический обмен. Примером ассимиляции может быть образование белковых молекул.
Любые реакции синтеза проходят с расходом энергии. Источником ее выступают ранее образованные соединения, находящиеся в клетке. Они подвергаются распаду вследствие протекания совокупности процессов диссимиляции.
Частично освобождающаяся энергия применяется при синтезе различных соединений, часть рассеивается с теплом или запасается.
Соответственно, диссимиляция – это процесс,заключающийся в разложении веществ с освобождением энергии.
Процесс диссимиляции в организме именуется еще катаболизм или энергетический обмен.
Ассимиляция и диссимиляция не могут существовать по отдельности. Нарушение баланса этих процессов приведет к развитию заболеваний или гибели организма. К примеру, это может выразиться в истощении или ожирении.
Метаболизм в клеточных структурах протекает при средней температуре, нормальном давлении и нейтральной среде. Из курса химии нам известно, что только повышение данных показателей приведет к ускорению реакции. При таких же условиях реакции должны протекать очень медленно. Однако, в биологических системах есть помощники метаболизма – ферменты.
Роль ферментов в метаболизме огромна. Данные структуры ускоряют реакцию без изменения ее общего результата. Причем абсолютно все процессы в организме протекают при участии ферментов. К примеру, под их действием происходит разложение пищи на составные компоненты.
Исходя из значения ферментов в метаболизме можно сказать, что нарушение их образования и активности приведет к различным заболеваниям.
Энергетический обмен
Диссимиляция или энергетический обмен проходит в несколько этапов. Познакомимся с ними на схеме.
Примером подобного процесса считается гликолиз – многоступенчатое расщепление глюкозы. Мономеры углеводов подвергаются распаду в отсутствии кислорода с освобождением энергии, определенное количество которой расходуется для формирования АТФ.
При протекании ряда последовательных этапов гликолиза совершается разложение молекулы глюкозы на две молекулы пировиноградной кислоты. Чаще всего, пировиноградная кислота затем преобразуется в молочную кислоту. Вследствие этих реакций в ходе гликолиза из АДФ, а также фосфорной кислоты синтезируются 2 молекулы АТФ.
Следует учесть, что по такому принципу гликолиз протекает в клетках животных и человека.
В растительных клетках, в отдельных дрожжевых грибах, у бактерий бескислородный этап осуществляется как спиртовое брожение.
В реакции спиртового брожения могут вступать всевозможные соединения. Например, углеводы, органические кислоты, спирты, аминокислоты и многие другие. Широкое распространение получили реакции расщепления глюкозы при молочнокислом, а также спиртовом брожении.
У молочнокислых бактерий спиртовое брожение сопровождается ферментативным расщеплением глюкозы и продуктом является молочная кислота.
Суммарные уравнения молочнокислого и спиртового брожения рассмотрим на рисунке.
Вследствие бескислородной стадии энергетического обмена вещества распадаются не до конечных продуктов, а до соединений с запасом энергии. Поэтому они переходят в следующий этап – кислородный.
3. Третья стадия энергетического обмена получила название аэробного или кислородного.В течение данных реакций осуществляется последующее разложение органических соединений до конечных продуктов. Характерен он только аэробным организмам, использующим для метаболизма кислород.
Происходит кислородный распад в митохондриях, поэтому именуется еще клеточным дыханием. Протекает оно в несколько поочередных стадий. Основным признаком клеточного дыхания является участие кислорода в распаде соединений.
В процессе клеточного дыхания осуществляется дальнейшее окисление пировиноградной кислоты с формированием двуокиси углерода и воды.
Данный этап считается заключительным, поэтому при клеточном дыхании выделяется внушительное число энергии в виде 36 молекул АТФ.
Вследствие процесса энергетического обмена веществ при окислении одной молекулы глюкозы формируется 38 молекул АТФ. Эта энергия используется на другие химические реакции. К примеру, у человека каждая молекула АТФ расщепляется и вновь создается 2400 раз в сутки, то есть средняя продолжительность жизни АТФ менее минуты.
Питание клетки
Для протекания метаболизма в клетке необходимы различные питательные вещества, которые организм получает в результате питания.
Все живые организмы различаются по тому, какую пищу они используют. Некоторые организмы способны сами производить вещества, другие же в процессе питания клетки потребляют уже готовые.
Различают несколько разновидностей организмов по способу питания клетки:
1. Автотрофы сами производят органические вещества. Для осуществления процессов синтеза они используют простые неорганические соединения – углекислый газ и воду. Источником энергии для протекания ассимиляции в клетке у автотрофов является солнечный свет или энергия химических взаимодействий.
Организмы, использующие солнечный свет для формирования органических соединений получили название фототрофы. Этим существам характерен фотосинтез, протекающий в хлоропластах. Соответственно, фототрофами являются все зеленые растения. Помимо этого, примером фототрофов считаются цианобактерии, зеленые и пурпурные бактерии.
Организмы, которые для производства органических соединений используют энергию химических взаимодействий, называются хемотрофами.
Хемотрофами являются некоторые бактерии, к примеру, железобактерии, серобактерии, нитрифицирующие бактерии.
Вдобавок есть организмы, применяющие для питания клетки автотрофный и гетеротрофный способ. К этим организмам относится эвглена зеленая. У нее есть хлоропласты и она может сама производить вещества для питания клетки как автотрофы. Однако в темноте, ее питание осуществляется гетеротрофным способом как у животной клетки.
Фотосинтез
Одним из примеров ассимиляции является процесс фотосинтеза у растений.
Фотосинтез происходит в фотосинтезирующем пигменте хлорофилле хлоропластов листа. Данный пигмент считается чрезмерно активным соединением и реализует поглощение света, начальный запас энергии, также последующая ее трансформация в химическую энергию.
Принято выделять световую и темновую фазы фотосинтеза. Остановимся детальнее на них.
Световая фаза совершается в мембранах хлоропластов. Наступает световая фаза фотосинтеза с поглощения кванта света молекулой хлорофилла. Один из электронов хлорофилла переводится на высочайший энергетический уровень и вступает в возбужденном состоянии. Электроны с большим избытком энергии активизируют разложение воды. Данная процедура, протекающая на начальной стадии фотосинтеза, приобрела наименование фотолиз воды.
В процессе световой фазы фотосинтеза совершается превращение световой энергии в химическую энергию макроэргических связей молекулы АТФ. В данной фазе фотосинтеза осуществляется выброс кислорода, являющегося второстепенным продуктом. Он может употребляться дальше растительными клетками при дыхании или выделяться в биосферу.
2. В момент темновой фазы фотосинтеза проистекают трудоемкие ферментативные взаимодействия. Основой считается трансформация молекул углекислого газа до органических соединений. Протекает данная стадия в строме хлоропластов в присутствии продуктов световой реакции.
Основным признаком темновой фазы фотосинтеза считается отсутствие солнечного света.
Начинается данная стадия с проникновения углекислого газа в листья через устьица. Затем он соединяется со своеобразным веществом – акцептором, которым выступает при фотосинтезе пятиуглеродный сахар – рибулозодифосфат. Вследствие этого формируется нестойкое соединение, разлагающиеся на 2 молекулы фосфороглицериновой кислоты. Эти молекулы подвергаются воздействию продуктов светового фотосинтеза, в частности АТФ.
Впоследствии, посредством некоторых переходных стадий, создаются углеводы, а также прочие органические соединения. Данный процесс трансформации углекислого газа в углеводы в темновой фазе фотосинтеза приобрел наименование цикла Кальвина.
В темновом фотосинтезе энергия макроэргических связей АТФ трансформируется в химическую энергию органических соединений. Данные вещества служат пищей для гетеротрофов.
Соответственно, первостепенными веществами темнового и светового фотосинтеза считаются кислород, а также углеводы.
Благодаря данному процессу возможно существование всех живых существ на Земле. Ведь он является одним источником свободного кислорода.
Хемосинтез
Помимо фотосинтеза имеется еще один процесс автотрофной ассимиляции – хемосинтез, типичный отдельным видам микроорганизмов.
Основой энергии для хемосинтеза здесь служит не свет, а окисление отдельных неорганических соединений. Открытие хемосинтеза у таких организмов как бактерии принадлежит русскому ученому С.Н. Виноградскому.
Важнейшей группой данного типа питания считаются нитрифицирующие бактерии. Они могут окислять возникающий при гниении остатков аммиак до нитрита, а также до нитрата. Вследствие этого совершается освобождение энергии, нужной нитрифицирующим бактериям для жизненных функций.
Хемотрофные нитрифицирующие бактерии массово встречаются в природной среде. Они находятся в почве, в различных водоемах. Исполняемые ими процессы считаются частью круговорота азота.
Серобактерии – это еще одни существа, способом питания которых является хемосинтез. Вследствие этого они окисляют сероводород и накапливают в своих клетках серу.
К серобактериям относятся многие автотрофные пурпурные, а также зеленые бактерии.
Серобактерии являются разрушителями горных пород, в связи с формированием серной кислоты в ходе питания. Выделяемая ими едкая жидкость активизирует порчу различных сооружений.
Многочисленные типы серобактерий в ходе питания образуют всевозможные производные серы. Это способствует очищению промышленных сточных вод.
В процессе питания железобактерии переводят железо (II) в железо (III). Освободившаяся энергия употребляется с целью восстановления углекислого газа до органических соединений.
Хемосинтетики – единственные организмы, жизнь которых не связана с освещением. Соответственно они способны существовать в различных местах, осваивая глубины океана или недра земли.
Обмен веществ и превращение энергии – свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание
Содержание:
Обмен веществ и превращение энергии – свойства живых организмов
Обмен веществ является комплексом различных химических преобразований, способствующих сохранению и самовоспроизведению биоструктур.
Он заключается в поступлении веществ в организм во время питания и дыхания, метаболизме внутри клетки или обмене веществ, вдобавок, в высвобождении конечных продуктов метаболизма.
Метаболизм неотрывно соединён с процессами преобразований определённых видов энергии в другие. К примеру, в начале процесса фотосинтеза световая энергия скапливается в виде энергии химических связей сложных органических молекул, в процессе же дыхания она освобождается и применяется для синтезирования новых молекул, механические и осмотические работы, рассеянные в виде тепла и т. д.
Поток химических превращений в живых организмах снабжается биологическими катализаторами белковой специфики — ферментами или энзимами. Наряду с остальными катализаторами, энзимы ускоряют течение химических реакций в клетке до нескольких сотен тысяч раз, при этом они не меняют природу или свойства конечных продуктов клетки. Ферменты представляют собой простые или сложные белковые молекулы, которые, помимо части, состоящей из белка, включают небелковый кофактор, по – другому называемый коферментом. Ферментами являются, например: амилаза слюны, которая расщепляет гликаны при длительном жевании и пепсин, который обеспечивает переваривание белков в желудочно-кишечном тракте.
Механизм действия ферментов заключается в том, чтобы снизить энергию активации веществ (субстратов), которые вступают в реакцию вследствие образования промежуточных фермент-субстратных комплексов.
Энергетический и пластический обмен, их взаимосвязь
Метаболизм процессуально слагается из двух частей, происходящих в клетке в одно и то же время: пластического и энергетического обмена.
Пластический метаболизм (анаболизм, ассимиляция) является совокупностью реакций синтеза, сопровождающихся расходом энергии аденозинтрифосфата. Пластический обмен особенно важен тем, что в результате него синтезируются органические вещества, играющие важную роль в жизнедеятельности клетки. Реакциями данного обмена являются, например, процесс фотосинтеза, биологический синтез белковых молекул и репликация молекул ДНК (самодублирование).
Энергетический обмен (катаболизм, диссимиляция) являет собой сочетание реакций разложения сложных веществ на более простые. Результатом данного обмена является накапливание энергии в форме АТФ. Важнейшими процессами энергетического обмена являются дыхание и брожение.
Пластический и энергетический обмены прочно коррелируют между собой, в связи с тем, что синтез органических веществ происходит в процессе пластического обмена, а для этого нужна именно энергия АТФ; в процессе обмена энергии органические вещества разлагаются, и высвобождается АТФ, а затем используется для синтеза.
Получение энергии организмами осуществляется в процессе питания, затем высвобождают ее и переводят в форму, доступную главным образом в процессе дыхания. По способу питания все организмы подразделяются на автотрофные и гетеротрофные. Автотрофы способны к самостоятельному синтезу органических веществ из неорганических, а гетеротрофные организмы поглощают уже готовые органические вещества.
Ассимиляция — биосинтез макромолекул, свойственных клеткам организма. Растения и многие бактерии могут создавать молекулы глюкозы из углекислого газа и воды. На этот процесс расходуется и запасается энергия. Животным необходимы готовые молекулы белков, жиров и углеводов (БЖУ). Это важнейший строительный и энергетический материал для клеток.
Ассимиляция — это совокупность процессов создания структур организма с накоплением энергии.
Чтобы организм мог усвоить вещества из пищи, они должны быть сначала разобраны на «кирпичики» или мономеры. Из них в организме «собираются» собственные макромолекулы.
Диссимиляция — распад веществ, противоположный ассимиляции (биосинтезу). Белки гидролизуются до аминокислот. При распаде жиров выделяются жирные кислоты и глицерин. Сложные углеводы разлагаются на простые сахара.
Ассимиляция и диссимиляция происходят согласованно. Распад и окисление веществ с выделением энергии возможны лишь тогда, когда есть субстрат — макромолекулы. Они разлагаются на мономеры, которые участвуют в биосинтезе. Выделяющаяся при диссимиляции энергия затрачивается на образование свойственных организму веществ.
Стадии энергетического обмена
Несмотря на сложность реакций обмена энергии, он разделяется на три фазы:
На подготовительном этапе происходит разложение молекул гликанов, липидов, белков, нуклеиновых кислот на более простые, к примеру, на глюкозу, глицерин и жирные кислоты, аминокислоты, нуклеотиды. Эта фаза может осуществляться непосредственно в клетках или в кишечнике, откуда эти вещества переносятся кровотоком.
В анаэробной фазе энергетического катаболизма в дальнейшем происходит расщепление мономеров органических соединений до более простых промежуточных соединений, к примеру, пировиноградной кислоты или пирувата. Он не нуждается в присутствии кислорода, и для организмов, живущих в болотном иле, это единственный способ получить энергию. Анаэробная фаза энергетического обмена проходит в цитоплазме.
Некоторые вещества подвергаются бескислородному расщеплению, при этом глюкоза, чаще всего, остается основным субстратом реакций. Процесс его свободного от кислорода распада принято называть гликолизом. Вследствие гликолиза, молекула глюкозы теряет четыре атома водорода, то есть она окисляется, и образуются две молекулы пировиноградной кислоты, две молекулы АТФ и две молекулы переносчика водорода, восстановленного НАДH + H + :
Образование АТФ из АДФ осуществляется за счет прямого переноса фосфат-аниона из предварительно фосфорилированного сахара и называется субстратным фосфорилированием.
Аэробная фаза энергетического катаболизма может происходить только в присутствии кислорода, тогда как промежуточные продукты, образующиеся при бескислородном разложении, окисляются до конечных продуктов (углекислого газа и воды), и большая часть энергии, хранящейся в химических связях органических соединений, высвобождается. В молекулу АТФ входит 36 макроэргических связей. Эта стадия имеет такое название, как тканевое дыхание. Когда кислород отсутствует, происходит преобразование промежуточных продуктов обмена веществ в определённые органические вещества, данный процесс принято называть ферментацией или брожением.
Брожение и дыхание
Брожение и дыхание это две различные формы диссимиляции — разложения веществ в организме для получения энергии.
Брожение
Примеры процессов брожения известны из повседневной жизни, производственной деятельности.
Во всех случаях брожения микроорганизмы изменяют углеводы и производят макроэнергетическое вещество — АТФ. Для этого процесса не требуется кислород, что является важнейшим отличием от дыхания. Общий признак — химическая энергия связей в молекуле глюкозы преобразуется в энергию в форме АТФ, которая используется для жизненных процессов.
Брожение — древнейший и не самый совершенный способ выработки энергии. Из одной молекулы глюкозы образуется 2 молекулы АТФ. Кислородный процесс более эффективен в плане получения энергии.
Организмы, которым необходим кислород для дыхания, являются аэробами (в переводе с греческого «аэр» — воздух). Внешняя сторона процесса заключается в поглощении кислорода из воздуха и выделении диоксида углерода.
Молекулы О2 попадают в организм насекомых через трахеи. Для рыб характерно жаберное дыхание, для млекопитающих — легочное. Переносят кислород к органам и транспортируют диоксид углерода красные кровяные клетки, содержащие гемоглобин.
При отсутствии кислорода начинает происходить ферментация. Ферментация является эволюционно более ранним способом генерирования энергии, чем дыхание, но она менее энергетически выгодна, потому что ферментация производит органическое вещество, которое все еще богато энергией. Различают несколько основных видов брожения: уксусно – кислое, спиртовое, маслянокислое, молочнокислое, метановое и др.
Стало быть, в скелетных мышцах в отсутствие кислорода во время ферментации пировиноградная кислота восстанавливается до молочной кислоты, тогда как ранее образованные восстановительные эквиваленты расходуются, и остаются только две молекулы АТФ:
При ферментации с дрожжами пировиноградная кислота в присутствии кислорода преобразуется в этиловый спирт и окись углерода (IV):
Во время ферментации с использованием микроорганизмов пируват также может образовывать уксусную, масляную, муравьиную кислоты и так далее.
Энергия АТФ, которая образуется вследствие энергетического обмена, используется клеткой на различные виды работ:
Дыхание
Кислородное дыхание производится в митохондриях, где пировиноградная кислота вначале теряет один атом углерода, что сопровождается синтезом одного восстанавливающего эквивалента молекул НАДН + Н + и ацетилкофермента A (ацетил-КоА):
Ацетил-КоА в митохондриальном матриксе участвует в цепочке химических превращений, которые в совокупности называются циклом Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты). Во время этих превращений образуются две молекулы АТФ, ацетил-КоА полностью окисляется до диоксида углерода, а его ионы водорода и электроны присоединяются к водородным векторам НАДН + Н + и НАДH2. Носители переносят протоны и электроны водорода во внутренние митохондриальные мембраны, которые образуют гребни. При помощи белков-носителей протоны водорода вводятся в межмембранное пространство, а электроны переносятся через, так называемую, дыхательную цепь энзимов, которые расположены во внутренней митохондриальной мембране, и разряжаются в атомы кислорода:
Важно то, что в дыхательной цепи имеются белки, содержащие железо и серу.
Протоны водорода переносятся из межмембранного пространства в митохондриальный матрикс благодаря специальным ферментам, АТФ-синтетаз, а энергия, выделенная в результате этого процесса, используется для синтеза 34 молекул АТФ из каждой молекулы глюкозы. Этот процесс называется окислительным фосфорилированием. В митохондриальной матрице протоны водорода, прореагировавшие с радикалами кислорода с образованием воды:
Набор кислородных дыхательных реакций можно выразить таким уравнением:
Общее уравнение дыхания выглядит следующим образом:
Таким образом, клеточное дыхание в организме человека происходит поэтапно. Гликолиз сопровождается образованием 8 молекул АТФ (2 из них расходуются). Окислительное декарбоксилирование «дает» 6 АТФ, цикл Кребса — 24 АТФ. Итого, разложение молекулы глюкозы приводит к созданию 38 молекул АТФ. Аэробное дыхание — более совершенный способ получения и накопления энергии.