Что превращает гликоген в глюкозу

Что превращает гликоген в глюкозу

а) Инсулин увеличивает облегченную диффузию глюкозы. Скорость транспорта глюкозы, как и транспорта других моносахаридов, существенно увеличивается инсулином. Если поджелудочная железа продуцирует большие количества инсулина, скорость транспорта глюкозы в большинстве клеток возрастает более чем в 10 раз по сравнению со скоростью транспорта глюкозы при отсутствии инсулина. Напротив, при отсутствии инсулина количество глюкозы, которое может диффундировать внутрь большинства клеток, за исключением клеток мозга и печени, столь мало, что не в состоянии обеспечить нормальный уровень энергетических потребностей.

Скорость потребления глюкозы большинством клеток находится под контролирующим влиянием скорости продукции инсулина поджелудочной железой. Функции инсулина и его регуляторные влияния на обмен углеводов подробно изложены в отдельной статье на сайте (просим вас пользоваться формой поиска выше).

б) Фосфорилирование глюкозы. Как только глюкоза попадает в клетки, она связывается с фосфатными радикалами в соответствии со следующей схемой реакции:

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Фосфорилирование осуществляется главным образом ферментом глюкокиназой в печени или гексокиназой в большинстве других клеток. Фосфорилирование глюкозы является почти полностью необратимой реакцией, исключая клетки печени, эпителиоциты почечного тубулярного аппарата и клетки кишечного эпителия, в которых присутствует другой фермент — глюкофосфорилаза. Будучи активирована, она может сделать реакцию обратимой. В большинстве тканей организма фосфорилирование служит способом захвата глюкозы клетками. Это происходит в связи со способностью глюкозы немедленно связываться с фосфатом, а в такой форме она не может выходить обратно из клетки, кроме некоторых особых случаев, в частности из клеток печени, которые располагают ферментом фосфатазой.

в) Гликоген запасается в печени и мышцах. После поступления внутрь клетки глюкоза практически немедленно используется клеткой для энергетических целей либо запасается в виде гликогена, который является крупным полимером глюкозы.

Все клетки организма способны запасать какие-то количества гликогена, но особенно большие его количества депонируются клетками печени, которая может запасать гликоген в количествах, составляющих от 5 до 8% веса этого органа, или мышечными клетками, содержание гликогена в которых составляет от 1 до 3%. Молекула гликогена может полимеризоваться так, что в состоянии иметь практически любую молекулярную массу; в среднем молекулярная масса гликогена составляет около 5 млн. В большинстве случаев гликоген, осаждаясь, образует крупные гранулы.

Превращение моносахаридов в преципитирующее соединение с большой молекулярной массой (гликоген) дает возможность запасать большие количества углеводов без заметного изменения осмотического давления во внутриклеточном пространстве. Высокая концентрация растворимых моносахаридов с низкой молекулярной массой могла бы приводить к катастрофическим последствиям для клеток в связи с формированием огромного градиента осмотического давления по обе стороны клеточной мембраны.

г) Гликогенез — процесс образования гликогена. Химические реакции образования гликогена показаны на рисунке ниже.

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозуХимические реакции глюкогенеза и гликогенолиза. Показаны также взаимные превращения глюкозы крови и гликогена печени (фосфатаза требуется для высвобождения глюкозы из клеток и представлена в клетках печени, но отсутствует в большинстве других клеток)

На рисунке видно, что глюкозо-6-фосфат становится глюкозо-1-фосфатом, который затем превращается в глюкозоуридинфосфат, в итоге образующий гликоген. Для этих превращений необходимы специфические ферменты. Кроме того, и другие моносахариды, превращаясь в глюкозу, могут участвовать в образовании гликогена. Более мелкие соединения, включая молочную кислоту, глицерол, пировиноградную кислоту и некоторые дезаминированные аминокислоты, также могут превращаться в глюкозу или близкие ей соединения и затем становиться гликогеном.

д) Гликогенолиз — извлечение гликогена из депо. Процесс расщепления гликогена, хранящегося в клетках, который сопровождается высвобождением глюкозы, называют гликогенолизом. Затем глюкоза может использоваться в целях получения энергии. Гликогенолиз невозможен без реакций, обратных реакциям получения гликогена, при этом каждая вновь отщепляющаяся от гликогена молекула глюкозы подвергается фосфорилированию, катализируемому ферментом фосфорилазой. В состоянии покоя фосфорилаза пребывает в неактивном состоянии, поэтому гликоген может храниться в депо. Когда появляется необходимость получить глюкозу из гликогена, прежде всего должна активироваться фосфорилаза. Это может достигаться несколькими путями.

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

е) Активация фосфорилазы адреналином или глюкагоном. Два гормона — адреналин и глюкагон — могут активировать фосфорилазу и таким образом ускорять процессы гликогенолиза. Начальные моменты влияний этих гормонов связаны с образованием в клетках циклического аденозинмонофосфатау который затем запускает каскад химических реакций, активирующих фосфорилазу.

Адреналин выделяется из мозгового вещества надпочечников под влиянием активации симпатической нервной системы, поэтому одна из ее функций заключается в обеспечении обменных процессов. Эффект адреналина особенно заметен в отношении клеток печени и скелетных мышц, что обеспечивает наряду с влияниями симпатической нервной системы готовность организма к действию.

Глюкагон — гормон, выделяемый альфа-клетками поджелудочной железы, когда концентрация глюкозы в крови снижается до слишком низких значений. Он стимулирует образование циклического АМФ главным образом в клетках печени, что, в свою очередь, обеспечивает превращение в печени гликогена в глюкозу и ее высвобождение в кровь, повышая таким образом концентрацию глюкозы в крови.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Что превращает гликоген в глюкозу

Все биологические процессы, происходящие в окружающем мире, по своей сути являются химическими реакциями. Первую химическую реакцию человек осуществил, когда разжег костер – это реакция горения. Первое антибактериальное применение продуктов брожения и величайшее открытие в области медицины совершил Нострадамус. Большинство из нас знает его как предсказателя, но его основная заслуга состоит в том, что он нашел способ борьбы с чумой с помощью уксусной кислоты. История свидетельствует, чума лишила Нострадамуса и первой семьи, и друзей. С тех пор он искал средство борьбы от страшной болезни. Найдя чудо-лекарство, исследователь переезжал из города в город, где появлялась чума, спасая множество жизней [1].

Первым биохимиком была клетка, которая научилась энергетическому обмену: научилась поглощать свет и выделять энергию, необходимую для жизнеобеспечения. Таким образом, первый биохимик – это и есть сама жизнь. Все процессы, которые протекают в клетках живого организма, – это биохимические реакции.

Название «углеводы» появилось из-за того, что многие представители данного класса имеют общую формулу: Сn(Н2О)m, где n и m >= 4. Известно множество углеводов, не соответствующих этой формуле, но несмотря на это термин «углеводы» употребляется и по сей день. Другое общепринятое название этого класса соединений – сахара.

Все углеводы можно разделить на четыре больших класса.

Моносахариды – это гетерофункциональные соединения, содержащие оксогруппу и несколько гидроксильных групп. Они не могут быть гидролизованы до более простых форм углеводов и являются структурной единицей любых углеводов, например, глюкоза, фруктоза, рибулоза, рамноза. Содержатся в различных продуктах: фрукты, мёд, некоторые виды вина, шоколад.

Олигосахариды – это соединения, построенные из нескольких остатков моносахаридов, связанных между собой гликозидной связью. Они делятся по числу моносахаридов в молекуле на дисахариды, трисахариды и т.д. К биологически активным производным олигосахаридов относятся некоторые антибиотики, сердечные гликозиды.

Дисахариды – это углеводы, которые при гидролизе дают две одинаковые или различные молекулы моносахарида и связаны между собой гликозидной связью, например, лактоза, сахароза, мальтоза. При гидролизе из дисахаридов образуется глюкоза.

Полисахариды – имеют общий принцип строения с олигосахаридами, за исключением моносахаридных остатков – полисахариды могут содержать их сотни и даже тысячи. Примеры: крахмал, гликоген, хитин, целлюлоза [2].

Для лучшего понимания реакций расщепления углеводов в организме, рассмотрим более подробно глюкозу, участвующую в этих процессах.

Глюкоза является одним из самых распространенных углеводов в природе, моносахарид, или гексоза С6Н12О6. Второе её название – виноградный сахар. Это растворимое в воде вещество белого цвета, сладкое на вкус. В молекуле глюкозы имеется четыре неравноценных асимметрических атома углерода (рис. 1):

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 1. Строение молекулы глюкозы

Для такого соединения возможно 24 = 16 стереоизомеров, которые образуют 8 пар зеркальных оптических антиподов. Каждое из восьми соединений представляет собой диастереомер (диа – двойной) с присущими только ему физическими свойствами (растворимость, температура плавления и т.д.).

Глюкоза содержится в растительных и живых организмах. Велико ее содержание в виноградном соке, в меде, фруктах и ягодах, в семенах, листьях крапивы. Глюкоза повышает работоспособность мозга, благотворно влияет на нервную систему человека. Именно поэтому в стрессовых ситуациях люди иногда хотят чего-нибудь сладкого. Помимо этого, глюкоза применяется в медицине для приготовления лечебных препаратов, консервирования крови, внутривенного вливания и т.д. Она широко применяется в кондитерском производстве, производстве зеркал и игрушек (серебрение). Ее используют при окраске тканей и кож.

Биохимические реакции расщепления углеводов в организме человека

Для поддержания жизнедеятельности организма используется энергия, скрытая в химических связях продуктов питания. Во многих продуктах питания содержится значительное количество углеводов в виде полисахаридов (сахар, крахмал, клетчатка) и моноз (глюкоза, фруктоза, лактоза и др.). К примеру, в картофеле содержание крахмала составляет до 16 %, в рисе – 78 %, а в белом хлебе – 51 %.

Уже во рту человека начинается процесс расщепления углеводов. Происходит гидролиз крахмала под действием биологического катализатора – фермента амилазы, который содержится в пище. Под действием амилазы молекула крахмала расщепляется на довольно короткие цепочки, которые состоят из глюкозных звеньев. После этого углеводы попадают в желудок. Далее под действием желудочного сока заканчивается кислотный гидролиз крахмала. Крахмал распадается до отдельных глюкозных звеньев. Глюкоза попадает в кишечник и через стенки кишок поступает в кровь, разносящую её по всему человеческому организму.

Содержание глюкозы в крови поддерживается на постоянном уровне при помощи гормона инсулина, который выделяется поджелудочной железой. Инсулин полимеризует избыточную глюкозу в животный крахмал – гликоген, который откладывается в печени. Часть гликогена в печени может гидролизоваться в глюкозу, далее поступающую обратно в кровь. Это происходит при понижении содержания глюкозы в крови. Если поджелудочная железа не может вырабатывать инсулин, содержание глюкозы в крови повышается, что приводит к диабету. Именно поэтому людям, болеющим сахарным диабетом, необходимо регулярно вводить в кровь инсулин.

Молекула глюкозы, попадая в клетку организма, окисляется, «сгорает» с образованием воды и диоксида углерода. При этом выделяется энергия, необходимая организму для движения, согревания, осуществления различных физических нагрузок и т.д. Но биологическое окисление глюкозы похоже на обычное горение лишь по своим конечным результатам. Биологическое окисление – процесс медленный, многоступенчатый. Только малая часть высвобождаемой при окислении энергии превращается на каждой стадии данного процесса в тепло. Значительная доля энергии, заключенной в химических связях глюкозы, расходуется на образование других веществ, из которых важнейшее в биоэнергетике – аденозинтрифосфорная кислота C10H16N5O13P3 (АТФ). Это соединение состоит из трех частей – гетероцикла аденина, рибозы (сахара) и трех остатков фосфорной кислоты, образующей с рибозой сложный эфир (рис.2).

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 2. Структура аденозинтрифосфорной кислоты

АТФ в клетках – универсальная энергетическая валюта. Множество ферментов умеют вести химические реакции, осуществляющиеся с затратой энергии, за счет гидролитического отщепления одного или двух остатков фосфорной кислоты от молекулы АТФ (этот процесс сопровождается выделением энергии), или наоборот, умеют использовать энергию, которая высвобождается в реакциях с выделением энергии для того, чтобы АТФ образовалась. Расщепляя АТФ, клетка использует высвобождаемую энергию на биосинтез различных соединений, а окисляя углеводы – синтезирует АТФ.

Первая стадия «сгорания» глюкозы в клетке – взаимодействие глюкозы с АТФ (рис. 3). При этом АТФ переходит в АДФ (аденозиндифосфат C10H15N5O10P2), а глюкоза – в 6-фосфат. Этот процесс фосфорилирования происходит под действием фермента гексокиназы за счет перенос остатка фосфорной кислоты (H3PO4) от фосфорилирующего агента – донора к субстрату:

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 3. Взаимодействие глюкозы с АТФ

Следующий этап окисления – «рокировка» глюкозофосфата во фруктозофосфат, который происходит под действием фермента изомеразы (рис.4). Рокировка типа глюкоза–фруктоза делает доступным для фосфорилирования еще один гидроксил сахара (т.к. взаимодействовать с АТФ могут только краевые гидроксилы):

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 4. Взаимодействие глюкозо-6-фосфата и фермента изомеразы

После второго фосфорилирования уже под действием другого фермента – фосфорфруктокиназы – получается в итоге фруктозо-1,6-дифосфат (C6H14O12P2 ) (рис.5):

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 5. Взаимодействие фруктозо-6-фосфата и 6-фосфоруктокиназы

Фруктозо-1,6-дифосфат распадается на две части. Получается дигидроксиацетонфосфат ( C3H7O6P ) и глицеральдегид-3-фосфат ( C3H7O6P) (рис. 6).

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 6. Распад Фруктозо-1,6-дифосфата

Клетке нужен только второй продукт, и она с помощью фермента изомеразы превращает первый фосфат во второй (чтобы не было отходов производства) (рис. 7).

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 7. Превращение диоксиацетон-фосфата в глицеральдегид-3-фосфат

На данной стадии в реакцию вступают два соединения: глутатион – соединение, несущее меркаптогруппу SН и никотинамидаденинуклеотид (НАД). НАД легко присоединяет водород: НАД-Н2.

Далее развивается процесс, мало изученный в деталях, но описать его можно пока следующим образом. Под действием НАД и его восстановленной формы, фермента дегидрогеназы и фосфорной кислоты, глицеральдегид-3-фосфат превращается в смешанный ангидрид 3-фосфоглицериновой и фосфорной кислот (рис. 8).

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 8. Превращение глицеральдегид-3-фосфата в смешанный ангидрид 3-фосфоглицериновой и фосфорной кислот

Всё это время энергия только поглощалась, так как АТФ переходил в АДФ. Теперь в реакции будет вступать АДФ, а в продуктах появится АТФ, и энергия будет выделяться. Так, под действием АДФ и фермента фосфоглицераткиназы образуется 3-фосфоглицериновая кислота (рис. 9).

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 9. Образование 3-фосфоглицерата

В ней фермент фосфоглицеромутаза вызывает «рокировку» фосфатной группы в положение 2 (рис. 10).

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 10. Превращение 3-фосфоглицерата в 2-фосфоглицерат

На полученный продукт воздействует фермент енолаза и АДФ – получается пировиноградная кислота (рис. 11, 12).

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 11. Дегидратация 2-фосфоглицерата

Что превращает гликоген в глюкозу. Смотреть фото Что превращает гликоген в глюкозу. Смотреть картинку Что превращает гликоген в глюкозу. Картинка про Что превращает гликоген в глюкозу. Фото Что превращает гликоген в глюкозу

Рис. 12. Перенос фосфорильной группы с фосфоенолпирувата на АДФ. Образование пирувата

Процесс превращения глюкозы в пировиноградную кислоту в клетке называется гликолизом [3]. В результате гликолиза клетка получает из одной молекулы глюкозы восемь молекул АТФ и две молекулы пировиноградной кислоты. Превращение глюкозы в пировиноградную кислоту является первой стадией, общей для нескольких процессов. То же самое происходит под действием дрожжей на раствор сахара. Но реакция не закачивается получением пировиноградной кислоты. От этой кислоты отщепляется (под действием фермента декарбоксилазы) молекула диоксида углерода и образуется уксусный альдегид, который, в свою очередь, атакуется ферментом дегидрогеназой и НАД-Н2. В результате при отсутствии кислорода получается этиловый спирт.

На самом деле уравнение этого сложного процесса выглядит довольно просто:

С6Н12О6 à 2С2Н5ОН + 2СО2

Это и есть процесс брожения. В мышцах НАД-Н2 восстанавливает пировиноградную кислоту в молочную. Это происходит при большой нагрузке, когда кровь не успевает подводить кислород в нужном количестве. Поэтому у спортсменов, пробежавших дистанцию, резко увеличивается в крови количество молочной кислоты [4].

Ферменты – это биологические катализаторы, имеющие белковую природу, помогающие ускорить химические реакции как в живых организмах, так и вне их. Ферменты обладают высокой каталитической активностью. К примеру, чтобы расщепить молекулу полиуглевода (крахмал, целлюлозу) или какой – либо белок на составные части, их нужно несколько часов кипятить с крепкими растворами щелочей либо кислот. А ферменты пищеварительных соков (пепсин, протеаза, амилаза) способны гидролизовать эти вещества буквально за несколько секунд при температуре 37 °С. Помимо этого, ферменты обладают избирательностью своего действия в отношении структуры субстрата, условий проведения реакции и её типа (фермент превращает только данный тип субстратов в определенных реакциях и условиях). Ферменты катализируют огромное количество реакций, протекающих в живой клетке при размножении, дыхании, обмене веществ и т.д. [5].

В современном понимании биохимическое расщепление углеводов – это метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода. Огромную роль в биохимических процессах играют микроорганизмы, ферменты и катализаторы. Считается, что анаэробный гликолиз (расщепление углеводов) был первым источником энергии для общих предков всех живых организмов до того, как концентрация кислорода в атмосфере стала достаточно высокой, и поэтому эта форма генерации энергии в клетках – более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.

В настоящее время ученые считают, что все реакции биохимического расщепления углеводов на начальной стадии имеют общую схему вплоть до образования пировиноградной кислоты. Затем, в зависимости от условий и качества ферментов, из пировиноградной кислоты образуются конечные продукты реакции: спирты, кислоты (уксусная, лимонная, молочная, яблочная, масляная и т.д.), альдегиды, углекислый газ, водород, вода и пр.

Изучение биохимических реакций расщепления углеводов в организме человека и анализ использованных источников позволили сделать следующие выводы:

1. В общем виде схему механизма расщепления углеводов можно представить следующим образом: сложный углевод (дисахарид, полисахарид) à глюкоза à эфиры фосфорных кислот à глицериновый альдегид à глицериновая кислота à пировиноградная кислота à далее возможны любые упомянутые выше направления.

2. Биохимические реакции углеводов лежат в основе жизнедеятельности клеток живых организмов, в том числе и человека.

3. Биохимические процессы расщепления углеводов, которые изображаются простыми, на первый взгляд, уравнениями начальных и конечных продуктов, на самом деле представляют собой сложные и многоступенчатые процессы.

4. Для осуществления биохимических процессов необходимы ферменты и катализаторы, которые ускоряют реакции расщепления углеводов в тысячи раз.

Изучая сложнейшие процессы, происходящие в живой клетке, ученые задумываются: а нельзя ли, научившись у природы, провести в колбах и ретортах искусственные химические процессы, копирующие биохимические реакции? Начатые по инициативе академика Н.Н. Семенова, такие исследования в области «химической бионики» успешно ведутся в России и во всем мире [6].

Источник

Параграф 31. обмен гликогена

Автор текста – Анисимова Елена Сергеевна.
Авторские права защищены. Продавать текст нельзя.
Курсив не зубрить.

Замечания можно присылать по почте: exam_bch@mail.ru
https://vk.com/bch_5

ПАРАГРАФ № 31. См. п. 28-30.
Обмен гликогена.»

Знать формулы глюкозы, глюкозо-6-фосфат и глюкозо-1-фосфата, уметь соединить остатки глюкозы 1,4 и 1,6 связями (фрагмент молекулы гликогена).

31. 1. Структура молекулы гликогена.

Определение. – Гликоген – это полимер, состоящий из остатков глюкозы, соединенных ;-1,4 гликозидными связями в линейных участках и ;-1,6 гликозидными связями в точках ветвления. Гликоген находится в мышцах и печени. При употреблении в пищу мышц и печени гликоген переваривается в ЖКТ до глюкозы – см. № 30.
Структура молекулы гликогена – самый первый остаток глюкозы присоединен к особому небольшому белку, который называется гликогенином и выполняет функцию «затравки» при синтезе молекулы гликогена (в том смысле, что с присоединения глюкозы к гликогенину начинается синтез гликогена).
К первому остатку глюкозы присоединяются еще несколько остатков ;-1,4-связями, образуя первую «ветку» гликогена.
К некоторым остаткам глюкозы первой ветки ;-1,6-гликозидными связями присоединяются остатки глюкозы, которые дают начало новым веткам молекулы гликогена.
В молекуле гликогена различают около 12 концентрических слоёв.
Внешние глюкозные остатки могут отщепляться от молекулы гликогена, превращаясь в глюкозу.

31. 2. Р а с щ е п л е н и е г л и к о г е н а

в печени и мышцах называется лизисом гликогена или ГЛИКОГЕНО/ЛИЗОМ (не путать с гликолизом – расщеплением глюкозы).
При гликогенолизе отщепляются самые внешние остатки глюкозы, «с концов веточек» (поэтому чем больше веточек и 1,6 связей – тем быстрее можно расщепить гликоген).
В клетках мышц глюкозные остатки отщепляются для использования в клетках самих мышц,
а в печени – для выхода глюкозы в кровь при ее дефиците, то есть при гипогликемии, которая возникает при голоде, стрессе, повышенном расходе глюкозы.
Но запасов гликогена печени организму хватает только на 12 часов – после этого глюкозу должен давать глюконеогенез, сырьём для которого служат белки мышц – п.33.

31. 2. 2. Регуляция расщепления гликогена (путём фосфоролиза – см. далее).

Расщепление гликогена (как и глюконеогенез) нужно и происходит при голоде под действием гормона голода глюкагона
и при стрессе под действием гормонов стресса ГКС и катехоламинов адреналина и норадреналина.
При сытости и покое расщепление гликогена не нужно и не происходит, поскольку оно тормозится гормоном покоя и сытости инсулином. При дефиците инсулина или его действия при сахарном диабете расщепление не тормозится инсулином, что приводит к ускорению расщепления гликогена и способствует гипергликемии.

Регуляция расщепления гликогена осуществляется через изменение активности и/или концентрации его ключевых ферментов: гликоген/фосфорилазы и гексозо-6-фосфатазы (см. далее):
инсулин препятствует работе ферментов расщепления гликогена, а глюкагон и ГКС с КА способствуют (ГКС индуцируют глюкозо-6-фосфатазу, а глюкагон и катехоламины активируют гликоген/фосфорилазу, с помощью вторых посредников – цАМФ и ионов кальция).

31. 2. 3. Способы гликогенолиза.

Есть два способа гликогенолиза –
1 – (в печени) если при расщеплении присоединяются молекулы глюкозы, то расщепление называется гидролизом (гликолитическим) и катализируется ферментом ;-амилазой, которая отщепляет по одной молекуле глюкозы;
2 – (в печени и в мышцах) если при расщеплении присоединяются молекулы фосфорной кислоты (Н3РО4), то расщепление называется фосфоролизом или фосфоролитическим и катализируется ферментом, который называется фосфорилазой гликогена.

31. 2. 4. Фосфоролиз гликогена (описание)

Фосфорилаза отщепляет один остаток глюкозы, присоединяя к нему фосфат (в первом положении),
в результате чего продуктами фосфорилазы становятся глюкозо-1-фосфат
и укороченная на один глюкозный остаток молекула гликогена (n-1).
После этого от молекулы гликогена фосфорилазой отщепляются по одному следующие глюкозные остатки, пока не встретится 1,6-связь.
1,6 связь расщепляется так называемым противоветвящим ферментом, после чего 1,4-связи продолжают расщепляться фосфорилазой.

31. 2. 5. Р е а к ц и и ф о с ф о р о л и з а (три):

1-я реакция фосфоролиза:

гликоген(n) + фосфорная кислота (Н3РО4) = гликоген(n-1) и глюкозо-1-фосфат.
Один глюкозный остаток отщепился, к нему присоединился фосфата (без затраты АТФ!),
а в молекуле гликогена стало на один глюкозный остаток меньше (n-1).

2-я реакция фосфоролиза:

перенос фосфата из 1-го положения глюкозо-1-фосфата в 6-е положение, в результате чего глюкозо-1-фофат превращается в глюкозо-6-фосфат. Реакция обратима (обратная протекает при синтезе гликогена), фермент называется фосфоглюкомутазой. Остальные реакции в обмене гликогена необратимы.
Схема реакции: Глюкозо-1-фосфат ; глюкозо-6-фосфат.

3-я реакция фосфоролиза:

фосфат отщепляется от 6-го положения (путем гидролиза), в результате чего образуются фосфорная кислота и глюкоза, способная выйти в кровь для питания мозга и эритроцитов, повысить концентрацию глюкозы в крови.
В этом главное значение гликогенолиза в печени – являться одним их источников глюкозы для организма.
Схема реакции: глюкозо-6-фосфат + Н2О = глюкоза + фосфорная кислота.
Чтобы назвать фермент этой реакции, нужно добавить «аза» к глюкозо-6-фосфату: глюкозо-6-фосфатаза.
Ферменты, которые катализируют отщепление фосфатов (путем гидролиза, дефосфорилирование), называются фосфатазами.
В мышцах нет фермента глюкозо-6-фосфатаза, поэтому в них глюкозо-6-фосфат не превращается в глюкозу,
поэтому гликоген мышц не является резервом глюкозы для других тканей.
Образованный в мышцах глюкозо-6-фосфат вступает в реакции гликолиза, превращаясь в лактат (в анаэробных условиях напряженно работающей мышцы) – п.32.
Фосфорилаза и глюкозо-6-фосфатаза – ключевые фермента фосфоролиза.

Нужен для того, чтобы при голоде или стрессе в организме был резерв глюкозы для мозга и эритроцитов, который предотвратит «голодный обморок» и поддержит работоспособность.

31. 3. 2. Регуляция синтеза гликогена.

Поэтому при стрессе и голоде синтез гликогена не происходит (гормоны голода и стресса снижают синтез гликогена), а в покое и сытости синтез гликогена происходит под влиянием инсулина.
Регуляция синтеза гликогена осуществляется через изменение активности и/или концентрации его ключевых ферментов: гексокиназы и гликоген/синтазы (см. далее):
Инсулин способствует работе ферментов синтеза гликогена, а глюкагон и ГКС с КА препятствуют (ГКС репрессируют гексокиназу, а глюкагон и катехоламины инактивируют гликоген/синтазу с помощью вторых посредников – цАМФ и ионов кальция).
Синтез гликогена – один из процессов, использующих глюкозу, поэтому его протекание способствует снижению концентрации глюкозы в крови.

31. 3. 3. Реакции синтеза гликогена (четыре):
1-я реакция синтеза гликогена:

такая же, как в гликолизе и ПФП (п.32 и 35): присоединение к глюкозе фосфата (фосфорилирование), которое превращает её в глюкозо-6-фосфат. Источником АТФ является фосфат, катализирующие реакции такого типа (перенос фосфата от АТФ на субстрат) ферменты называются киназами; киназа, катализирующая фосфорилирование глюкозы и других гексоз на 6-му положению, называется гексокиназой.
Схема: глюкоза + АТФ ; глюкозо-6-фосфата + АДФ.

2-я реакция синтеза гликогена:

перенос фосфата из 6-го положения в первое, в результате чего глюкозо-6-фосфат превращается в глюкозо-1-фосфат. Эта реакция обратима, в обратную сторону она протекает при расщеплении гликогена (см. выше). Фермент – фосфоглюкомутаза. Остальные реакции синтеза гликогена необратимы.
Глюкозо-6-фосфат ; глюкозо-1-фосфат.

3-я реакция синтеза гликогена:

Образование УДФ-глюкозы из глюкозо-1-фосфата в результате присоединения к фосфату УМФ (п.70). Источником УМФ является УТФ поэтому УТФ называют макроэргом углеводного обмена. Затраты УТФ приравниваются к затратам АТФ. Расщепление УТФ до УМФ равнозначно трате двух АТФ. Таким образом, при синтезе гликогена на присоединение каждой молекулы глюкозы тратится 3 молекулы АТФ (третья – в первой реакции).
Глюкозо-1-фосфат + УТФ ;глюкозо-1-фосфат-УМФ (=УДФ-глюкоза) + ФФн

4-я реакция синтеза гликогена:

Глюкоза отщепляется от УДФ и переносится на растущую цепочку молекулы гликогена, присоединяясь к нему 1,4-гликозидной связью.
УДФ-глюкоза + гликоген с n-количеством глюкозных остатков ;
; УДФ + гликоген с (n+1) количеством глюкозных остатков.

31. 4. Гликогенозы и агликогенозы.

Встречаются люди с низкой активностью ферментов, участвующих в расщеплении гликогена
(гликоген/фосфорилазы и глюкозо-6-фосфатазы; второй ещё в ГНГ работает п.33) – из-за этого у них гликоген не расщепляется (путем фосфоролиза), накапливается в печени – это накопление называется ГЛИКОГЕНОЗОМ.

При гликогенозе не может образовываться глюкоза за счет расщепления гликогена, поэтому у людей с гликогенозом снижена способность переносить обычные перерывы в приемах пищи, поэтому им необходимо есть чаще, чем обычным людям (есть углеводную) пищу. Больший перерыв в приеме пищи может привести у таких людей к снижению концентрации глюкозы в крови (гипогликемии), появлению слабости, обмороку. Накопление гликогена приводит также к увеличению печени.
Гликогеноз – это пример метаболического блока: низкой скорости реакции из-за низкой активности фермент (из-за мутации гена). Пример первичной энзимопатии.
Дефицит глюкозо-6-фосфатазы тяжелее, так как в этом случае глюкоза не образуется и при ГНГ. Вся надежда на регулярное питание.

Встречаются люди со сниженной активностью фермента синтеза гликогена гликоген/синтазы из-за мутации кодирующего его гена. У них гликоген не синтезируется (или мало), поэтому и расщепляться при голоде не может.
Это отсутствие гликогена называется А-ГЛИКОГЕНОЗОМ (приставка «а-» означает отсутствие).
При агликогенозе образ жизни такой же, как при гликогенозе – нужно регулярно питаться, так как резерва глюкозы (гликоген) на случай голода отсутствует. Возможно, помогает ГНГ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *