Что при охлаждении расширяется
# физика | Почему вода легче… воды?
Одно из самых распространенных веществ на Земле: вода. Она, как и воздух, необходима нам, но мы ее порой совсем не замечаем. Она просто есть. Но, оказывается, обыкновенная вода может менять свой объем и весить то больше, то меньше. При испарении воды, ее нагревании и охлаждении происходят поистине удивительные вещи, о которых мы и узнаем сегодня.
Сегодня речь пойдет об объеме и весе воды. Оказывается, один и тот же объем воды не всегда весит одинаково. И если налить воду в стакан и она не прольется через край — это еще не значит, что она поместится в нем при любых обстоятельствах.
1. При нагревании вода увеличивается в объеме
Поставьте наполненную водой банку в кастрюлю, наполненную сантиметров на пять кипящей водой, и на слабом огне поддерживайте кипение. Вода из банки начнет переливаться через край. Это происходит потому, что при нагревании вода, подобно другим жидкостям, начинает занимать больше пространства. Молекулы отталкиваются друг от друга с большей интенсивностью и это ведет к увеличению объема воды.
2. При охлаждении вода сжимается
Дайте воде в банке остыть при комнатной температуре, или налейте новую воду, и поставьте ее в холодильник. Через некоторое время вы обнаружите, что полная прежде банка уже не полна. При охлаждении до температуры 3,89 градусов по Цельсию вода уменьшает свой объем по мере снижения температуры. Причиной тому стало снижение скорости движения молекул и их сближение друг с другом под воздействием охлаждения.
Казалось бы, все очень просто: чем холоднее вода, тем меньший объем она занимает, но…
3. …объем воды вновь возрастает при замерзании
Наполните банку водой до краев и накройте куском картона. Поставьте ее в морозилку и дождитесь замерзания. Вы обнаружите, что картонную «крышку» вытолкнуло. На температурном интервале между 3,89 и 0 градусов по Цельсию, то есть на подходе к точке своего замерзания, вода вновь начинает расширяться. Она является одним из немногих известных веществ, обладающих подобным свойством.
Если использовать плотную крышку, то лед просто разнесет банку. Приходилось ли вам слышать о том, что даже водопроводные трубы может разорвать льдом?
4. Лед легче воды
Поместите пару кубиков льда в стакан с водой. Лед будет плавать на поверхности. Вода при замерзании увеличивается в объеме. И, вследствие этого, лед легче воды: его объем составляет около 91% соответствующего объема воды.
Это свойство воды существует в природе не зря. У него есть вполне определенное предназначение. Говорят, что зимой реки замерзают. Но на самом деле это не совсем верно. Обычно замерзает лишь небольшой верхний слой. Это ледяной покров не тонет, поскольку он легче жидкой воды. Он замедляет замерзание воды на глубине реки и служит своеобразным одеялом, оберегая рыб и другую речную да озерную живность от лютых зимних морозов. Изучая физику, начинаешь понимать, что очень многое в природе устроено целесообразно.
5. Водопроводная вода содержит минералы
Влейте в небольшую стеклянную миску 5 столовых ложек обычной водопроводной воды. Когда вода испарится, на миске останется белая кайма. Эта кайма сформирована минералами, которые были растворены в воде, когда она проходила слои грунта.
Посмотрите внутрь своего чайника и вы увидите там минеральный налет. Такой же налет образуется и на отверстии для стока воды в ванне.
Попробуйте испарить дождевую воду, чтобы самостоятельно проверить, содержит ли она минералы.
Если совместить воду с другими жидкостями, то можно обнаружить, что с некоторыми вода не смешивается. Благодаря таким свойствам веществ можно сделать красивейшую сахарную радугу.
Почему вода расширяется при замерзании?
Когда вода замерзает, ее молекулы выстраиваются в кристаллическую структуру, тем самым приобретая определенную форму. Эта кристаллическая структура менее плотная, и поскольку между отдельными молекулами в структуре есть промежутки, общий объем увеличивается, и вода «расширяется».
С беглого взгляда фраза «вода расширяется, когда она замерзает» может не иметь смысла, потому что в жидкой форме вода не имеет определенной формы или очертаний и поэтому, кажется, занимает больше места. Кроме того, когда вода замерзает, она принимает четко определенную форму, которая кажется совершенно противоположной «расширению».
Действительно ли вода расширяется при замерзании?
Да, вода расширяется при замерзании. Обратите внимание, что слово «расширяется» в этом предложении означает увеличение объема. Поэтому технически правильно было бы сказать так: объем воды увеличивается при замерзании.
Это утверждение является точным, и вы можете проверить его правомерность с помощью простого эксперимента: если вы снизите температуру воды, вы заметите, что объем воды уменьшается, поскольку она становится все более и более «нетронутой».
Вы можете обратиться к следующей диаграмме, чтобы представить эту зависимость графически:
Обратите внимание, что объем воды начинает увеличиваться при понижении температуры ниже 4 градусов Цельсия.
Теперь давайте поговорим о том, почему увеличивается объем воды или почему она расширяется, когда замерзает и достигает твердой формы.
Почему объем воды увеличивается, когда она замерзает?
Это явление связано с химическим составом воды. Видите ли, молекула воды состоит из двух атомов водорода и одного атома кислорода. Расположение этих атомов совершенно уникально, что придает воде некоторые особые свойства, такие как высокая теплоемкость воды, поверхностное натяжение, адгезия и когезия.
Является ли вода полярной или неполярной?
Химическая структура молекулы воды.
Такое расположение молекулы воды создает положительно заряженную сторону возле атомов водорода и отрицательно заряженную сторону возле атома кислорода.
Когда две молекулы воды сближаются, положительная сторона одной молекулы цепляется за отрицательную сторону другой молекулы. Когда это происходит в больших масштабах (т.е. с миллионами молекул воды), получается уникальная структура, которая объясняет некоторые химические свойства воды.
В жидком состоянии молекулы воды могут свободно перемещаться, образуя и разрывая водородные связи, что объясняет неправильную форму воды (или любой другой жидкости, если на то пошло). Некоторые молекулы воды часто «уложены» друг на друга, что объясняет более высокую плотность воды по сравнению со льдом.
Расположение молекул воды в жидком состоянии.
Однако по мере снижения температуры и охлаждения воды межмолекулярные силы увеличиваются, свобода движения молекул воды уменьшается, и они становятся все менее энергичными (с понижением температуры).
Когда вода достигает точки замерзания, движение ее молекул становится незначительным, и они приобретают более определенную форму, располагаясь в виде шестигранных решеток.
Ниже приведен упрощенный вариант расположения молекул воды в кристаллической форме во льду:
Расположение молекул воды в твердой форме.
Это кристаллическое расположение молекул воды менее плотное, поскольку оно не позволяет молекулам скапливаться (как это происходит в жидкой форме) из-за более сильных межмолекулярных сил.
Такое расстояние между молекулами и их фиксация в таком положении увеличивает объем воды, поэтому говорят, что вода расширяется при замерзании.
Почему лед плавает по воде
Вода расширяется, когда становится льдом, и, поскольку объем обратно пропорционален плотности вещества, лед менее плотен, чем вода. По этой причине лед, вещество, которое кажется более тяжелым, чем его жидкая форма, плавает на воде.
Если бы вода не расширялась при замерзании, лед был бы плотнее воды. Подумайте о влиянии на экосистему планеты! Лед на поверхности озер, морей и океанов утонет, и эти водоемы будут постепенно заполняться снизу вверх. С замерзшими озерами и океанами на Земле не было бы водной жизни.
С этой точки зрения очень хорошо, что вода расширяется в твердой форме!
Что происходит с водой при замерзании: молекулы расширяются или сжимаются?
В нашем сегодняшнем уроке мы узнаем что происходит с водой при замерзании и расширяются ли или сжимаются молекулы воды.
С приходом зимы вода начинает свой процесс расширения. Почему это происходит? Это свойство выделяет воду из списка всех остальных жидкостей и газов, которые, наоборот, сжимаются при охлаждении. В чем заключается причина такого поведения этой необычной жидкости?
Физика 3 класса: вода при замерзании расширяется или сжимается?
Большинство веществ и материалов увеличиваются в объеме при нагревании и уменьшаются при охлаждении. Газы этот эффект показывают более заметно, но различные жидкости и твердые металлы проявляют такие же свойства.
Молекулы воды требуют больше места
Причиной тому, что происходят эти процессы расширения и сжатия различных веществ, являются молекулы. Те из них, которые получают больше энергии (это происходит в теплом помещении), двигаются намного быстрее, чем молекулы, находящиеся в холодном помещении. Частицы, которые имеют большую энергию, сталкиваются намного активнее и чаще, им необходимо больше места для движения. Чтобы сдержать то давление, которое оказывают молекулы, материал начинает увеличиваться в размерах. Причем это происходит достаточно стремительно. Итак, вода при замерзании расширяется или сжимается? Почему это происходит?
Вода не подчиняется этим правилам. Если мы начинаем охлаждать воду до четырех градусов Цельсия, то она уменьшает свой объем. Но если температура продолжает падать, то вода вдруг начинает расширяться! Существует такое свойство, как аномалия плотности воды. Это свойство возникает при температуре в четыре градуса Цельсия.
Воде нужно больше места при ее охлаждении
В тот момент, когда начинается процесс формирования водородных связей, в воде начинают возникать места, где молекулы находятся в том же порядке, что и в кристалле льда. Эти заготовки называются кластерами. Они не прочны, как в твердом кристалле воды. При повышении температуры они разрушаются и меняют свое местоположение.
Во время процесса охлаждения воды начинает стремительно увеличиваться количество кластеров в жидкости. Они требуют больше пространства для распространения, вследствие этого вода и увеличивается в размерах после достижения своей аномальной плотности.
При падении столбика термометра ниже нуля кластеры начинают превращаться в мельчайшие кристаллы льда. Они начинают подниматься вверх. Вследствие всего этого вода превращается в лед. Это очень необычная способность воды. Данный феномен необходим для очень большого количества процессов в природе. Мы все знаем, а если не знаем, то запоминаем, что плотность льда незначительно меньше плотности прохладной или же холодной воды. Благодаря этому лед плавает на поверхности воды. Все водоемы начинают замерзать сверху вниз, что позволяет спокойно существовать и не замерзать водным обитателям на дне. Итак, теперь мы в подробностях знаем о том, расширяется или сжимается вода при замерзании.
Интересный феномен
Горячая вода замерзает быстрее холодной. Если мы возьмем два одинаковых стакана и нальем в один горячей воды, а в другой столько же холодной, то мы заметим, что горячая вода замерзнет быстрее, чем холодная. Это не логично, согласитесь? Горячей воде нужно остыть, чтобы начинать замерзать, а холодной этого не нужно. Как объяснить данный факт? Ученые по сей день не могут объяснить эту загадку. Данный феномен имеет название «Эффект Мпембы». Открыт был в 1963 году ученым из Танзании при необычном стечении обстоятельств. Студент хотел сделать себе мороженое и заметил, что горячая вода замерзает быстрее. Об этом он поделился со своим учителем физики, который сначала не поверил ему.
Тепловое расширение
Подавляющее большинство веществ при нагревании расширяется. Это легко объяснимо с позиции механической теории теплоты, поскольку при нагревании молекулы или атомы вещества начинают двигаться быстрее. В твердых телах атомы начинают с большей амплитудой колебаться вокруг своего среднего положения в кристаллической решетке, и им требуется больше свободного пространства. В результате тело расширяется. Так же и жидкости и газы, по большей части, расширяются с повышением температуры по причине увеличения скорости теплового движения свободных молекул (см. Закон Бойля—Мариотта, Закон Шарля, Уравнение состояния идеального газа).
где α — так называемый коэффициент линейного теплового расширения. Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.
Для инженеров тепловое расширение — жизненно важное явление. Проектируя стальной мост через реку в городе с континентальным климатом, нельзя не учитывать возможного перепада температур в пределах от —40°C до +40°C в течение года. Такие перепады вызовут изменение общей длины моста вплоть до нескольких метров, и, чтобы мост не вздыбливался летом и не испытывал мощных нагрузок на разрыв зимой, проектировщики составляют мост из отдельных секций, соединяя их специальными термическими буферными сочленениями, которые представляют собой входящие в зацепление, но не соединенные жестко ряды зубьев, которые плотно смыкаются в жару и достаточно широко расходятся в стужу. На длинном мосту может насчитываться довольно много таких буферов.
Однако не все материалы, особенно это касается кристаллических твердых тел, расширяются равномерно по всем направлениям. И далеко не все материалы расширяются одинаково при разных температурах. Самый яркий пример последнего рода — вода. При охлаждении вода сначала сжимается, как и большинство веществ. Однако, начиная с +4°C и до точки замерзания 0°C вода начинает расширяться при охлаждении и сжиматься при нагревании (с точки зрения приведенной выше формулы можно сказать, что в интервале температур от 0°C до +4°C коэффициент теплового расширения воды α принимает отрицательное значение). Именно благодаря этому редкому эффекту земные моря и океаны не промерзают до дна даже в самые сильные морозы: вода холоднее +4°C становится менее плотной, чем более теплая, и всплывает к поверхности, вытесняя ко дну воду с температурой выше +4°C.
То, что лед имеет удельную плотность ниже плотности воды, — еще одно (хотя и не связанное с предыдущим) аномальное свойство воды, которому мы обязаны существованием жизни на нашей планете. Если бы не этот эффект, лед шел бы ко дну рек, озер и океанов, и они, опять же, вымерзли бы до дна, убив всё живое.
Тепловое расширение твердых и жидких тел
Содержание:
Тепловое расширение – это изменение размеров и формы тел при изменении температуры. Математически можно высчитать объемный коэффициент расширения, позволяющий спрогнозировать поведение газов и жидкостей в изменяющихся внешних условиях. Чтобы получить такие же результаты для твердых тел, необходимо учитывать коэффициент линейного расширения.
На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.
Тепловое расширение твердых и жидких тел
Тепловое расширение (также используется термин «термическое расширение») — это изменение линейных размеров и формы тела при изменении его температуры. Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.
Зависимость объёма тел от температуры
Частицы твёрдого тела занимают друг относительно друга определённые положения, но не остаются в покое, а совершают колебания. При нагревании тела увеличивается средняя скорость движения частиц. Средние расстояния между частицами при этом увеличиваются, поэтому увеличиваются линейные размеры тела, а следовательно, увеличивается и объём тела.
При охлаждении линейные размеры тела сокращаются, и объём его уменьшается.
При нагревании, как известно, тела расширяются, а при охлаждении сжимаются. Качественная сторона этих явлений была уже рассмотрена в начальном курсе физики.
Наша задача теперь — ознакомиться с количественными законами этих явлений.
Линейное расширение твёрдых тел
Твёрдое тело при данной температуре имеет определённую форму и определённые линейные размеры. Увеличение линейных размеров тела при нагревании называется тепловым линейным расширением.
Измерения показывают, что одно и то же тело расширяется при различных температурах по-разному: при высоких температурах обычно сильнее, чем при низких. Но это различие в расширении столь невелико, что при сравнительно небольших изменениях температуры им можно пренебречь и считать, что изменение размеров тела пропорционально изменению температуры.
В начальном курсе физики было установлено, что различные вещества по-разному расширяются при нагревании: одни сильнее, другие слабее; железо, например, расширяется сильнее стекла и слабее меди.
Чтобы количественно характеризовать это важное тепловое свойство тел, введена особая величина, называемая коэффициентом линейного расширения.
Пусть твёрдое тело при температуре 0°С имеет длину а при температуре t° его длина становится
Значит, при изменении температуры на t° длина тела увеличивается на
Предполагая, что увеличение длины при нагревании на каждый градус идёт равномерно, находим, что при нагревании на 1°С вся длина тела увеличилась на
каждая единица длины на
(1)
Величина (греч. «бэта»), характеризующая тепловое расширение тела, называется коэффициентом линейного расширения.
Формула (1) показывает, что при t = 1°С и = 1 ед. длины величина
равна
т. е. коэффициент линейного расширения численно равен удлинению, которое получает при нагревании на 1°С стержень, имевший при 0°С длину, равную единице длины.
Из формулы (1) следует, что наименованием коэффициента является
Формулу (1) можно записать в следующем виде:
Отсюда легко определить длину тела при любой температуре, если известны его начальная длина и коэффициент линейного расширения.
Ниже в таблице приведены коэффициенты линейного расширения некоторых веществ, определённые на опыте.
Объёмное расширение твёрдых тел
При тепловом расширении твёрдого тела с увеличением линейных размеров тела увеличивается и его объём. Аналогично коэффициенту линейного расширения для характеристики объёмного расширения можно ввести коэффициент объёмного расширения. Опыт показывает, что так же, как и в случае линейного расширения, можно без большой ошибки принять, что приращение объёма тела пропорционально повышению температуры.
(2)
При V0 = 1 ед. объёма и t = 1°С величина а равна Vt— V0, т. е. коэффициент объёмного расширения численно равен приросту объёма тела при нагревании на 1°С, если при 0°С объём был равен единице объёма.
По формуле (2), зная объём тела при температуре 0°С, можно вычислить объём его при любой температуре t°:
Установим соотношение между коэффициентами объёмного и линейного расширения.
Можно написать следующее равенство:
В этой формуле величины и
настолько малы, что ими можно пренебречь и написать:
Коэффициент объёмного расширения твёрдого тела равен утроенному коэффициенту линейного расширения.
Учёт теплового расширения в технике
Из таблицы на странице 124 видно, что коэффициенты расширения твёрдых тел очень малы. Однако самые незначительные, изменения размеров тел при изменении температуры вызывают появление огромных сил.
Опыт показывает, что даже для небольшою удлинения твёрдого тела требуются огромные внешние силы. Так, например, чтобы увеличить длину стального стержня сечением в 1 см 2 приблизительно на 0,0005 его первоначальной длины, необходимо приложить силу в 1000 кГ. Но такой же величины расширение этого стержня получается при нагревании его на 50°С. Ясно поэтому, что, расширяясь при нагревании (или сжимаясь при охлаждении) на 50°С, стержень будет оказывать давление около 1000 на те тела, которые будут препятствовать его расширению (сжатию).
Огромные силы, возникающие при расширении и сжатии твёрдых тел, учитываются в технике. Так, например, один из концов моста не закрепляют неподвижно, а устанавливают на катках; железнодорожные рельсы не укладывают вплотную, а оставляют между ними просвет; паропроводы подвешивают на крюках, а между отдельными трубами устанавливают компенсаторы, изгибающиеся при удлинении труб паропровода. По этой же причине котёл паровоза закрепляется только на одном конце, другой же его конец может свободно перемещаться.
Огромное значение имеет расширение от нагревания при точных измерениях. В самом деле, если масштабная линейка или калибр, которыми проверяются размеры изготовленной части машины, значительно изменяют свою величину, то необходимой точности при измерении не получится. Для избежания грубых ошибок при измерении или контроле изготовленные изделия заблаговременно приносят в помещение, где производятся измерения, чтобы они успели принять температуру калибров. Самые калибры и измерительные инструменты делают из материала с очень малым коэффициентом расширения. Таким материалом, например, является особая железо-никелевая сталь — инвар, с коэффициентом расширения 0,0000015.
Рис. 132а. Схема устройства металлического термометра.
Как показывает таблица на странице 124, платина и стекло имеют одинаковый коэффициент расширения; поэтому можно вплавлять платину в стекло, причём после охлаждения не происходит ни ослабления связи обоих веществ, ни растрескивания стекла. В электрических лампочках в стекло вплавляется железо-никелевая проволока, имеющая такой же коэффициент расширения, как и стекло. Заслуживает внимания очень малый коэффициент расширения у кварцевого стекла. Такое стекло выдерживает, не лопаясь и не растрескиваясь, неравномерное нагревание или охлаждение. Так, например, в раскалённую докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается. Указанная особенность кварцевого стекла является следствием малости его коэффициента теплового расширения.
Терморегулятор
Две одинаковые полоски из разных металлов, например из железа и латуни, склёпанные вместе, образуют так называемую биметаллическую пластинку. При нагревании такие пластинки изгибаются вследствие того, что одна расширяется больше другой. Та из полосок, которая расширяется больше, оказывается всегда с выпуклой стороны. Это свойство биметаллических пластинок широко используется для измерения температуры и её регулирования.
1. Металлический термометр. Этот прибор представляет собой биметаллическую дугу (рис. 132, а), конец которой A прочно закреплён, а конец В свободен. Дуга соединена в В со стрелкой С. При изменении температуры дуга закручивается или раскручивается, двигая соответственно стрелку. Шкала проградуирована по обыкновенному термометру. Если к концу стрелки прикрепить перо, то колебания температуры можно записывать на специальной бумажной ленте. По такому принципу устроен термограф.
2. Термостат. Так называется прибор для установления постоянной температуры.
Рас. 1326. Принцип устройства регулятора температуры с биметаллической пластинкой.
На рисунке 132б изображён принцип устройства одного из типов регуляторов температуры. Биметаллическая дуга С при изменении температуры закручивается или раскручивается. К её свободному концу прикреплена металлическая пластинка М, которая при раскручивании дуги прикасается к контакту К, а при закручивании отходит от него. Если, например, контакт К и пластинка М присоединены к концам электрической цепи АА1 содержащей нагревательный прибор, то при соприкосновении К и М электрическая цепь замкнётся; прибор начнёт нагревать помещение. Биметаллическая дуга С при нагревании начнёт закручиваться и при определённой температуре отсоединит пластинку М от контакта К цепь разорвётся, нагревание прекратится. При охлаждении дуга С, раскручиваясь, снова заставит включиться нагревательный прибор: таким образом, температура помещения будет поддерживаться на заданном уровне.
Рис. 132в. Прибор для определения коэффициента расширения жидкостей.
Тепловое расширение жидкостей
В отношении жидкостей имеет смысл говорить лишь об объёмном расширении. У жидкостей оно значительно больше, чем у твёрдых тел. Как показывает опыт, зависимость объёма жидкости от температуры выражается такой же формулой, что и для твёрдых тел.
Если при 0°С жидкость занимает объём V0, то при температуре t её объём Vt будет:
Для измерения коэффициента расширения жидкости применяется стеклянный сосуд термометрической формы, объём которого известен (рис. 132в). Шарик с трубкой наполняют доверху жидкостью и нагревают весь прибор до определённой температуры; при этом часть жидкости выливается из сосуда. Затем сосуд с жидкостью охлаждают в тающем льду до 0°. При этом жидкость наполнит уже не весь сосуд, и незаполненный объём покажет, на сколько жидкость расширилась при нагревании. Зная коэффициент расширения стекла, можно довольно точно вычислить и коэффициент расширения жидкости.
Коэффициент расширения некоторых жидкостей:
Спирт. 0,00110 Вода (от 5 до 8°С). 0,00002
Керосин. 0,00100 Ртуть. 0,00018
Расширение воды при нагревании отличается от расширения других жидкостей. Если нагревать воду от 0°С, то можно заметить, что при нагревании до 4°С её объём не увеличивается, а уменьшается. При нагревании же выше 4°С объём воды увеличивается.
Наибольшую плотность, равную 1 вода имеет при 4°С. Изменение плотности воды в зависимости от температуры изображено графически на рисунке 133.
Рис. 133. График изменения плотности воды в зависимости от температуры.
Особенностью расширения воды объясняется то, что вода в прудах и озёрах не промерзает зимой до дна. При охлаждении воды осенью верхние остывшие слои опускаются на дно, а на их место снизу поступают более тёплые слои. Такое перемещение слоёв происходит только до тех пор, пока вода не примет температуру 4°С. При дальнейшем охлаждении верхние слои не опускаются вниз, а, постепенно охлаждаясь, остаются наверху и, наконец, замерзают.
Услуги по физике:
Лекции по физике:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.