Что принимается за абсолютный нуль температур

Как ученые рассчитали значение абсолютного нуля

Что принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температур

Что принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температур

Согласно законам термодинамики, абсолютный нуль недостижим. При этой температуре все атомы и молекулы обладают минимумом энергии

Температура является мерой движения атомов и молекул. С этой точки зрения абсолютный нуль представляет собой температуру, при которой атомы и молекулы перестают двигаться — у них просто нет энергии для передвижения или колебаний. Меньшие по размеру элементарные частицы могут двигаться даже при, казалось бы, полном отсутствии энергии. Это объясняется принципом неопределенности Гейзенберга, согласно которому мы не можем одновременно точно измерить координату и импульс квантовой частицы.

Абсолютный нуль считается началом отсчета абсолютных температурных шкал, в частности, шкалы Кельвина. По этой шкале температура замерзания воды составляет 273,16 градуса. Впервые о возможности существования минимума температур высказался Роберт Бойль в 1665 году. Он думал, что существует некое тело, имеющее минимальную температуру и содержащееся в других телах. Согласно Бойлю, именно благодаря этому телу все остальные объекты имеют свою температуру.

За ним последовали эксперименты французского физика Гийома Амонтона, который с помощью своего «воздушного» термометра измерял «упругость» воздуха. Физик утверждал, что самой низкой будет та температура, при которой упругость воздуха станет нулевой.

Источник

Что такое абсолютный ноль?

Что такое абсолютный ноль (чаще — нуль)? Действительно ли эта температура существует где-либо во Вселенной? Можем ли мы охладить что-либо до абсолютного нуля в реальной жизни? На эти и другие любопытные вопросы мы постараемся ответить в этой статье.

Что принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температур

Так что же такое абсолютный температурный ноль?

Есть масса причин, по которым стоит интересоваться пределами холодного. Возможно, вы невероятный суперзлодей, который использует силу замораживания, и хотите понять степень вашей силы. Или вам интересно, можно ли обогнать волну холода. Давайте исследуем самые дальние пределы холодной температуры.

«Действительно ли движение останавливается, достигая абсолютного нуля? Можем ли мы достичь этой отметки?»

Начнем с очевидного.

Что такое абсолютный ноль?

Даже если вы не физик, вы, вероятно, знакомы с понятием температуры. Но если вдруг вам не повезло, вы выросли в лесу или на другой планете, вот краткий обзор.

Температура — это мера измерения количества внутренней случайной энергии материала. Слово «внутренней» очень важно. Бросьте снежок, и хотя основное движение будет достаточно быстрым, снежный ком останется довольно холодным. С другой стороны, если вы посмотрите на молекулы воздуха, летающие по комнате, обычная молекула кислорода жарит со скоростью тысяч километров в час.

Мы обычно умолкаем, когда речь заходит о технических деталях, поэтому специально для экспертов отметим, что температура немного более сложная вещь, чем мы сказали. Истинное определение температуры подразумевает то, сколько энергии вам нужно затратить на каждую единицу энтропии (беспорядка, если хотите более понятное слово; подробнее об энтропии). Но давайте опустим тонкости и просто остановимся на том, что случайные молекулы воздуха или воды в толще льда будут двигаться или вибрировать все медленнее и медленнее, по мере понижения температуры.

Когда останавливаются молекулы и атомы?

В классическом рассмотрении вопроса при абсолютном нуле останавливается все, но именно в этот момент из-за угла выглядывает страшная морда квантовой механики. Одним из предсказаний квантовой механики, которое попортило кровь немалому количеству физиков, является то, что вы никогда не можете измерить точное положение или импульс частицы с совершенной определенностью. Это известно как принцип неопределенности Гейзенберга.

Если бы вы могли охладить герметичную комнату до абсолютного нуля, произошли бы странные вещи (об этом чуть позже). Давление воздуха упало бы практически до нуля, и поскольку давление воздуха обычно противостоит гравитации, воздух сколлапсирует в очень тонкий слой на полу.

Но даже в этом случае, если вы сможете измерить отдельные молекулы, вы обнаружите кое-что любопытное: они вибрируют и вращаются, совсем немного — квантовая неопределенность в работе. Чтобы поставить точки над i: если вы измерите вращение молекул углекислого газа при абсолютном нуле, вы обнаружите, что атомы кислорода облетают углерод со скоростью несколько километров в час — куда быстрее, чем вы предполагали.

Разговор заходит в тупик. Когда мы говорим о квантовом мире, движение теряет смысл. В таких масштабах все определяется неопределенностью, поэтому не то чтобы частицы были неподвижными, вы просто никогда не сможете измерить их так, словно они неподвижны.

Можно ли достичь абсолютного нуля градусов?

Стремление к абсолютному нулю по существу встречается с теми же проблемами, что и стремление к скорости света. Чтобы набрать скорость света, понадобится бесконечное количество энергии, а достижение абсолютного нуля требует извлечения бесконечного количества тепла. Оба этих процесса невозможны, если что.

Конечно, если вы хотите остыть не по-детски, вам нужно нырнуть в глубины космоса. Вся вселенная залита остатками излучения от Большого Взрыва, в самых пустых регионах космоса — 2,73 градуса по Кельвину, что немногим холоднее, чем температура жидкого гелия, который мы смогли получить на Земле век назад.

Но физики-низкотемпературщики используют замораживающие лучи, чтобы вывести технологию на совершенно новый уровень. Вас может удивить то, что замораживающие лучи принимают форму лазеров. Но как? Лазеры должны сжигать.

Все верно, но у лазеров есть одна особенность — можно даже сказать, ультимативная: весь свет излучается на одной частоте. Обычные нейтральные атомы вообще не взаимодействуют со светом, если частота не настроена точным образом. Если же атом летит к источнику света, свет получает допплеровский сдвиг и выходит на более высокую частоту. Атом поглощает меньшую энергию фотона, чем мог бы. Так что если настроить лазер пониже, быстродвижущиеся атомы будут поглощать свет, а излучая фотон в случайном направлении, будут терять немного энергии в среднем. Если повторять процесс, вы можете охладить газ до температуры меньше одного наноКельвина, миллиардной доли градуса.

Все приобретает более экстремальную окраску. Мировой рекорд самой низкой температуры составляет менее одной десятой миллиарда градуса выше абсолютного нуля. Устройства, которые добиваются этого, захватывают атомы в магнитные поля. «Температура» зависит не столько от самих атомов, сколько от спина атомных ядер.

Теперь, для восстановления справедливости, нам нужно немного пофантазировать. Когда мы обычно представляем себе что-то, замороженной до одной миллиардной доли градуса, вам наверняка рисуется картинка, как даже молекулы воздуха замерзают на месте. Можно даже представить разрушительное апокалиптическое устройство, замораживающее спины атомов.

В конечном счете, если вы действительно хотите испытать низкую температуру, все, что вам нужно, это ждать. Спустя примерно 17 миллиардов лет радиационный фон во Вселенной остынет до 1К. Через 95 миллиардов лет температура составит примерно 0,01К. Через 400 миллиардов лет глубокий космос будет таким же холодным, как самый холодный эксперимент на Земле, и после этого — еще холоднее. Если вам интересно, почему вселенная остывает так быстро, скажите спасибо нашим старым друзьям: энтропии и темной энергии. Вселенная находится в режиме акселерации, вступая в период экспоненциального роста, который будет продолжаться вечно. Вещи буду замерзать очень быстро.

Что происходит при 0 Кельвина?

Все это, конечно, замечательно, да и рекорды побивать тоже приятно. Но в чем смысл? Что ж, есть масса веских причин разбираться в низинах температуры, и не только на правах победителя.

Хорошие ребята из Национального института стандартов и технологий, например, просто хотели бы сделать классные часы. Стандарты времени основаны на таких вещах, как частота атома цезия. Если атом цезия движется слишком много, появляется неопределенность в измерениях, что, в конечном счете, приведет к сбою часов.

Но что более важно, особенно с точки зрения науки, материалы ведут себя безумно на экстремально низких температурах. К примеру, как лазер состоит из фотонов, которые синхронизируются друг с другом — на одной частоте и фазе — так и материал, известный как конденсат Бозе-Эйнштейна, может быть создан. В нем все атомы находятся в одном и том же состоянии. Или представьте себе амальгаму, в которой каждый атом теряет свою индивидуальность, и вся масса реагирует как один нуль-супер-атом.

При очень низких температурах многие материалы становятся сверхтекучими, что означает, что они могут совершенно не обладать вязкостью, укладываться сверхтонкими слоями и даже бросать вызов гравитации в достижении минимума энергии. Также при низких температурах многие материалы становятся сверхпроводящими, что означает отсутствие какого-либо электрического сопротивления. Сверхпроводники способны реагировать на внешние магнитные поля таким образом, чтобы полностью отменять их внутри металла. В результате, вы можете объединить холодную температуру и магнит и получить что-то типа левитации.

Почему есть абсолютный ноль, но нет абсолютного максимума?

Давайте взглянем на другую крайность. Если температура — это просто мера энергии, то можно просто представить атомы, которые подбираются ближе и ближе к скорости света. Не может же это продолжаться бесконечно?

Есть короткий ответ: мы не знаем. Вполне возможно, что буквально существует такая вещь, как бесконечная температура, но если есть абсолютный предел, юная вселенная предоставляет достаточно интересные подсказки относительно того, что это такое. Самая высокая температура, когда-либо существовавшая (как минимум в нашей вселенной), вероятно, случилась в так называемое «время Планка». Это был миг длиной в 10^-43 секунд после Большого Взрыва, когда гравитация отделилась от квантовой механики и физика стала именно такой, какой является сейчас. Температура в то время была примерно 10^32 K. Это в септиллион раз горячее, чем нутро нашего Солнца.

Опять же, мы совсем не уверены, самая ли это горячая температура из всех, что могли быть. Поскольку у нас даже нет большой модели вселенной в момент времени Планка, мы даже не уверены, что Вселенная кипятилась до такого состояния. В любом случае, к абсолютному нулю мы во много раз ближе, чем к абсолютной жаре.

Источник

О различных температурных шкалах

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Пересчёт температуры между основными шкалами

Источник

Абсолютный нуль температуры

Содержание

История

В 1703 г. французский физик Гийом Амонтон (фр. Guillaume Amontons) представил воздушный термометр, в котором за нуль шкалы принималась температура, при которой воздух «теряет всю свою упругость». Рассчитанное им значение составило −239,5 °C.

Что принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температур

Явления, наблюдаемые вблизи абсолютного нуля

При температурах, близких к абсолютному нулю, на макроскопическом уровне могут наблюдаться чисто квантовые эффекты, такие как:

Что принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температур

Примечания

Литература

См. также

Полезное

Смотреть что такое «Абсолютный нуль температуры» в других словарях:

АБСОЛЮТНЫЙ НУЛЬ ТЕМПЕРАТУРЫ — начало отсчёта термодинамич. темп ры; расположен на 273,16 К ниже темп ры тройной точки (0,01°С) воды (на 273, 15°С ниже нуля темп ры по шкале Цельсия, (см. ТЕМПЕРАТУРНЫЕ ШКАЛЫ). Существование термодинамической температурной шкалы и А. н. т.… … Физическая энциклопедия

абсолютный нуль температуры — начало отсчёта абсолютной температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16ºC ниже температуры тройной точки воды, для которой принято значение 0,01ºC. Абсолютный нуль температуры принципиально недостижим… … Энциклопедический словарь

абсолютный нуль температуры — absoliutusis nulis statusas T sritis Energetika apibrėžtis Termodinaminės temperatūros atskaitos pradžia, esanti 273,16 K žemiau trigubojo vandens taško. Pagal trečiąjį termodinamikos dėsnį, absoliutusis nulis nepasiekiamas. atitikmenys: angl.… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

Абсолютный нуль температуры — начальный отсчет по шкале Кельвина, составляет по шкале Цельсия отрицательную температуру в 273,16 градуса … Начала современного естествознания

АБСОЛЮТНЫЙ НУЛЬ — температуры, начало отсчета температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16шC ниже температуры тройной точки воды ( 0,01шC). Абсолютный нуль принципиально недостижим, практически достигнуты температуры,… … Современная энциклопедия

АБСОЛЮТНЫЙ НУЛЬ — температура, выражающая отсутствие теплоты, равна 218° Ц. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. абсолютный нуль температуры (физ.) – наиболее низкая возможная температура ( 273,15°C). Большой словарь… … Словарь иностранных слов русского языка

АБСОЛЮТНЫЙ НУЛЬ — температуры, начало отсчета температуры по термодинамической температурной шкале (см. ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ ШКАЛА). Абсолютный нуль расположен на 273,16 °С ниже температуры тройной точки (см. ТРОЙНАЯ ТОЧКА) воды, для которой принято… … Энциклопедический словарь

АБСОЛЮТНЫЙ НУЛЬ — предельно низкая температура, при которой прекращается тепловое движение молекул. Давление и объем идеального газа, согласно закону Бойля Мариотта, становится равным нулю, а за начало отсчета абсолютной температуры по шкале Кельвина принимается… … Экологический словарь

АБСОЛЮТНЫЙ НУЛЬ — начало отсчета абсолютной температуры. Соответствует 273,16° С. В настоящее время в физических лабораториях удалось получить температуру, превышающую абсолютный нуль всего на несколько миллионных долей градуса, достичь же его, согласно законам… … Энциклопедия Кольера

Источник

Абсолютный нуль

Абсолютный нуль.

Что принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температурЧто принимается за абсолютный нуль температур. Смотреть фото Что принимается за абсолютный нуль температур. Смотреть картинку Что принимается за абсолютный нуль температур. Картинка про Что принимается за абсолютный нуль температур. Фото Что принимается за абсолютный нуль температур

Абсолютный нуль – это нижний предел термодинамической температурной шкалы, состояние, при котором энтальпия и энтропия охлажденного идеального газа достигают своего минимального значения, принимаемого за ноль кельвинов.

Абсолютный нуль:

Абсолютный нуль температуры (реже – абсолютный ноль температуры) – минимальный предел температуры, которую может иметь физическое тело во Вселенной.

В рамках применимости термодинамики абсолютный нуль на практике недостижим. Его существование и положение на температурной шкале следует из экстраполяции наблюдаемых физических явлений, при этом такая экстраполяция показывает, что при абсолютном нуле энергия теплового движения молекул и атомов вещества должна быть равна нулю, то есть хаотическое движение частиц прекращается, и они образуют упорядоченную структуру, занимая чёткое положение в узлах кристаллической решётки (жидкий гелий составляет исключение). Однако, с точки зрения квантовой физики и при абсолютном нуле температуры существуют нулевые колебания, которые обусловлены квантовыми свойствами частиц и физического вакуума, их окружающего.

Температуры, близкие в абсолютному нулю:

Ученые на протяжении длительного времени стремились достичь абсолютного нуля в лаборатории. Однако фактически удалось достичь близких к нему температур.

На практике в настоящее время обычно достигается температура в 0,21 К путем испарения гелия. Другой метод, называемый «адиабатическое размагничивание парамагнитных веществ», позволяет получить еще более низкие температуры – до 10 −6 К. Наконец, лазерное охлаждение бозонных атомных газов до конденсата Бозе-Эйнштейна позволяет достичь температур порядка 10 −9 К.

Нынешний мировой рекорд самой наименьшей температуры был установлен в 1999 году. Он составляет 100 пикокельвинов или 10 −10 К и был достигнут путем охлаждения ядерных спинов в куске металлического родия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *