Что произойдет с клеткой если удалить ядро

Клетки сохраняют свои механические свойства после удаления ядра

Что произойдет с клеткой если удалить ядро

Ядро – крупнейшая органелла клеток эукариот, и, помимо хранения и воспроизведения наследственной информации, оно обеспечивает сопротивление внешним механическим нагрузкам, которые могут влиять на процессы, протекающие в ядре. С изменением механических свойств ядра связаны такие заболевания, как прогерия, мышечная дистрофия и рак.

Авторы исследования решили проверить, насколько велика роль ядра в поддержании формы и обеспечении механики самой клетки. Для этого существуют как косвенные методы, так и прямой – сравнить свойства обычных клеток и клеток без ядра.

В экспериментах авторы работы использовали два типа клеток: фибробласты (клетки соединительной ткани) крыс и клетки фибросаркомы (одного из типов опухолей мягких тканей) человека. У части этих клеток ученые выделили ядра и получили структуры трех видов: обычные клетки с ядром, клетки без ядра (цитопласты) и изолированные ядра клеток, окруженные тонкой клеточной мембраной (нуклеопласты). Наличие или отсутствие ядра в клетках подтвердили путем флуоресцентной и конфокальной микроскопии – с их помощью можно с высокой точностью рассмотреть внутреннюю структуру клетки, окрашенной флуоресцентной краской. Механические параметры клеток (модуль Юнга) ученые измеряли с помощью атомно-силового микроскопа в режиме силового картирования. Этот метод позволяет с высоким разрешением измерить жесткость различных участков клетки путем продавливания ее поверхности специальным зондом. Измерения проводили над всей клеткой, в том числе в области над ядром или над тем местом, где оно должно быть у безъядерной клетки.

Исследование показало, что удаление ядра не сделало клетки мягче, наоборот, их жесткость даже немного выросла. Нуклеопласты же были намного мягче, чем цитопласты и обычные клетки. Таким образом, ученые сделали вывод, что за поддержание формы клетки отвечает главным образом не ядро, а сеть актинового цитоскелета, по крайней мере в тех случаях, когда клетку деформируют не слишком сильно.

«Традиционно ядру приписывают определяющую роль в функционировании клетки. Многие представляют ядро не только как самую большую, но и как самую жесткую структуру внутри клетки. Вопрос, на который хотел ответить мы – насколько же ядро влияет на глобальную биомеханику клетки. К нашему удивлению, удаление ядра не привело к существенному изменению жесткости клетки. Конечно, требуются дальнейшие исследования, проверка данных для больших деформаций и воздействующих сил. Но имеющиеся данные говорят, что даже при отсутствии ядра, организующего центра клетки, она способна поддерживать механическую жесткость, необходимую для сопротивления внешним механическим воздействиям», – пояснил первый автор статьи, ведущий научный сотрудник отдела современных биоматериалов Сеченовского университета Юрий Ефремов.

В исследовании приняли участие ученые Сеченовского университета и Федерального научно-исследовательского центра «Кристаллография и фотоника» Российской академии наук. Работа поддержана Российским научным фондом (РНФ), грант №19-79-00354.

Источник

Клетки сохраняют свои механические свойства после удаления ядра

Клетки с ядрами в представлении Антони ван Левенгука

Российские ученые определили механические свойства клеток, из которых удалили ядро, и выяснили, что они выдерживают умеренные нагрузки не хуже, чем обычные клетки. Исследование поможет уточнить роль клеточного ядра и приблизиться к пониманию природы некоторых заболеваний, при которых изменяются его свойства. Результаты опубликованы в Journal of Nanobiotechnology.

Ядро – крупнейшая органелла клеток эукариот, и, помимо хранения и воспроизведения наследственной информации, оно обеспечивает сопротивление внешним механическим нагрузкам, которые могут влиять на процессы, протекающие в ядре. С изменением механических свойств ядра связаны такие заболевания, как прогерия, мышечная дистрофия и рак.

Авторы исследования решили проверить, насколько велика роль ядра в поддержании формы и обеспечении механики самой клетки. Для этого существуют как косвенные методы, так и прямой – сравнить свойства обычных клеток и клеток без ядра.

В экспериментах авторы работы использовали два типа клеток: фибробласты (клетки соединительной ткани) крыс и клетки фибросаркомы (одного из типов опухолей мягких тканей) человека. У части этих клеток ученые выделили ядра и получили структуры трех видов: обычные клетки с ядром, клетки без ядра (цитопласты) и изолированные ядра клеток, окруженные тонкой клеточной мембраной (нуклеопласты). Наличие или отсутствие ядра в клетках подтвердили путем флуоресцентной и конфокальной микроскопии – с их помощью можно с высокой точностью рассмотреть внутреннюю структуру клетки, окрашенной флуоресцентной краской. Механические параметры клеток (модуль Юнга) ученые измеряли с помощью атомно-силового микроскопа в режиме силового картирования. Этот метод позволяет с высоким разрешением измерить жесткость различных участков клетки путем продавливания ее поверхности специальным зондом. Измерения проводили над всей клеткой, в том числе в области над ядром или над тем местом, где оно должно быть у безъядерной клетки.

Исследование показало, что удаление ядра не сделало клетки мягче, наоборот, их жесткость даже немного выросла. Нуклеопласты же были намного мягче, чем цитопласты и обычные клетки. Таким образом, ученые сделали вывод, что за поддержание формы клетки отвечает главным образом не ядро, а сеть актинового цитоскелета, по крайней мере, в тех случаях, когда клетку деформируют не слишком сильно.

«Традиционно ядру приписывают определяющую роль в функционировании клетки. Многие представляют ядро не только как самую большую, но и как самую жесткую структуру внутри клетки. Вопрос, на который хотели ответить мы, – насколько же ядро влияет на глобальную биомеханику клетки. К нашему удивлению, удаление ядра не привело к существенному изменению жесткости клетки. Конечно, требуются дальнейшие исследования, проверка данных для больших деформаций и воздействующих сил. Но имеющиеся данные говорят, что даже при отсутствии ядра, организующего центра клетки, она способна поддерживать механическую жесткость, необходимую для сопротивления внешним механическим воздействиям», – пояснил первый автор статьи, ведущий научный сотрудник отдела современных биоматериалов Сеченовского университета Юрий Ефремов.

В исследовании приняли участие ученые Сеченовского университета и Федерального научно-исследовательского центра «Кристаллография и фотоника» Российской академии наук. Работа поддержана Российским научным фондом, грант № 19-79-00354.

Источник

Жизнедеятельность клетки. Деление и рост клетки

Урок 2. Биология. Сложные вопросы. Ботаника

Что произойдет с клеткой если удалить ядро

Что произойдет с клеткой если удалить ядро

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Что произойдет с клеткой если удалить ядро

Что произойдет с клеткой если удалить ядро

Что произойдет с клеткой если удалить ядро

Конспект урока «Жизнедеятельность клетки. Деление и рост клетки»

Вы уже знаете, что всё пространство клетки заполнено бесцветным вязким веществом – цитоплазмой. Она находится в постоянном движении. Движение цитоплазмы способствует перемещению в клетках питательных веществ и воздуха. Чем активнее жизнедеятельность клетки, тем больше скорость движения цитоплазмы. Если клетку сильно нагреть или заморозить, то цитоплазма разрушается, и клетка погибает.

Цитоплазма одной живой клетки обычно не изолирована от цитоплазмы других живых клеток, расположенных рядом. Нити цитоплазмы (плазмодесмы) соединяют соседние клетки, проходя через клеточные стенки.

Что произойдет с клеткой если удалить ядро

Растения имеют клеточное строение, так как их органы состоят из клеток. А каждая клетка – это микроскопически малая составная часть растения.

Каждая живая клетка дышит, питается, выделяет ненужные ей вещества, реагирует на воздействие внешней среды, в течение определённого времени растёт и размножается.

Клетки в процессе жизни потребляют различные вещества – воду, кислород, углекислый газ, органические и неорганические соединения. Они поступают в клетку в виде растворов и необходимы клетке для питания, дыхания и роста. А само растение получает необходимые вещества из воздуха и почвы.

Поступление веществ в клетку и их переработка называется питанием. В клетке из поступивших простых неорганических веществ образуются сложные вещества (белки, жиры и углеводы). Эти вещества идут на образование ядра, цитоплазмы и других частей клетки.

Фотосинтез – это сложный процесс, который происходит только в хлоропластах клеток растений только на свету. Более подробно мы рассмотрим этапы фотосинтеза при изучении отдельной темы. А сейчас запишем уравнение фотосинтеза – это процесс образования из двух неорганических веществ (углекислого газа и воды) органического вещества глюкозы. В результате фотосинтеза происходит выделение в окружающую среду кислорода. Фотосинтез происходит только на свету.

Что произойдет с клеткой если удалить ядро

Часть образованных питательных веществ идёт на построение клетки, а другая часть расходуется на получение энергии.

Дыхание происходит в живых клетках в течение всей их жизни. Растения – аэробные организмы (аэробы) – они используют для клеточного дыхания кислород.

Внутри клетки кислород вступает в реакции с органическими веществами. При этом происходят химические реакции, в результате которых сложные органические вещества превращаются в неорганические (воду и углекислый газ) и выделяется энергия. Такой процесс называется дыханием. Высвобождаемая энергия запасается в молекулах АТФ (аденозинтрифосфорной кислоты) – сложного химического соединения. Энергия нужна для обеспечения процессов жизнедеятельности – движения цитоплазмы, превращения одних веществ в другие.

Что произойдет с клеткой если удалить ядро

Заполним таблицу, в которой сравним процессы клеточного дыхания и фотосинтеза, используя следующие показатели: время суток, в которое происходит процесс; вещества, служащие исходным материалом; образующиеся вещества; тип используемой энергии. Клеточное дыхание происходит всегда, фотосинтез – только днём. Для клеточного дыхания необходимы органические вещества и кислород, для фотосинтеза – углекислый газ и вода. В результате дыхания образуются углекислый газ и вода, а в результате фотосинтеза – глюкоза и кислород. Для дыхания используется энергия химических связей, а при фотосинтезе – световая энергия.

Что произойдет с клеткой если удалить ядро

В течение жизни в клетке образуются ненужные вещества (избыток воды и солей, конечные продукты обмена). Все они выделяются в окружающую среду. Процесс освобождения организма от данных веществ называется выделением или экскрецией.

Одно из главных свойств живых систем – постоянный обмен веществ и энергии с окружающей средой. В клетках непрерывно идут процессы синтеза (пластический обмен, ассимиляция), то есть из простых неорганических соединений (углекислого газа, воды, минеральных солей) образуются сложные органические вещества (белки, жиры и углеводы). Все процессы синтеза идут с затратами энергии.

Примерно с такой же скоростью идёт энергетический обмен (диссимиляция). Это процесс расщепления сложных органических веществ до более простых соединений, сопровождающийся выделением энергии. Конечные продукты энергетического обмена: углекислый газ, вода и аммиак.

Совокупность реакций пластического и энергетического обмена, лежащих в основе жизнедеятельности и обуславливающих связь организма с окружающей средой, называется обменом веществ (или метаболизмом).

Заполним схему взаимосвязи обмена веществ и превращения энергии в организме. В ходе энергетического обмена сложные органические вещества расщепляются до конечных продуктов обмена и высвобождается энергия.

В результате пластического обмена происходит образование сложных органических веществ. При этом происходит поглощение энергии, которая образована в результате реакций энергетического обмена. Часть энергии расходуется на процессы жизнедеятельности.

Получается, что пластический и энергетический обмены неразрывно связаны. Они являются противоположными сторонами единого процесса обмена веществ.

Вещества, которые образуются в ходе энергетического обмена, могут использоваться в пластическом обмене для образования сложных органических соединений. И наоборот.

В молодых клетках преобладает процесс пластического обмена, в результате чего обеспечивается накопление веществ, рост и развитие. В старых клетках преобладает процесс энергетического обмена.

Что произойдет с клеткой если удалить ядро

Жизнь клетки с момента её образования в процессе деления материнской клетки до собственного деления (включая это деление) или гибели называется клеточным циклом. В течении этого цикла каждая клетка растёт и развивается таким образом, чтобы успешно выполнять свои функции в организме. В процессе жизни клетки растут и увеличиваются в размерах. Молодые растительные клетки содержат много мелких вакуолей, которые растут и в результате сливаются, заполняя практически весь объем клетки.

Что произойдет с клеткой если удалить ядро

У разных видов живых организмов клеточный цикл, во время которого клетка выполняет свои функции, занимает разное время: например, у бактерий он длится около 20 минут, у инфузории-туфельки – от 10 до 20 часов. Клетки многоклеточных организмов на ранних стадиях развития делятся часто, а затем клеточные циклы удлиняются.

Жизнь клетки включает два периода: деление, в результате которого образуются две дочерние клетки, – митоз; период между двумя делениями, который носит название интерфазы. Рассмотрим поближе данные периоды.

Интерфаза – промежуток клеточного цикла между двумя делениями. Вспомним, что в ядре находятся тельца цилиндрической формы – хромосомы. Они передают наследственные признаки от клетки к клетке. В течение всей интерфазы хромосомы деспирализованы (раскручены), они находятся в ядре клетки в виде нитей. В этот период клетка растёт и выполняет свои функции. Происходит обмен веществ, синтез белков и АТФ. Происходит удвоение числа хромосом, соответственно и генетического материала в клетке. При этом образуются два набора хромосом, несущие одинаковую информацию о жизненных процессах.

Что произойдет с клеткой если удалить ядро

Размножение клеток – это увеличение их количества. Новые клетки возникают в результате деления уже существующих клеток. Размножение является одним из обязательных свойств живого.

Для эукариотических клеток характерен митоз, в результате которого из одной материнской клетки образуются две дочерние с таким же набором хромосом. Сейчас мы с вами рассмотрим последовательные фазы митоза. Их четыре: профаза, метафаза, анафаза и телофаза.

Что произойдет с клеткой если удалить ядро

В метафазе завершается формирования веретена деления. Хромосомы располагаются упорядоченно в экваториальной плоскости клетки. Образуется метафазная пластинка. В эту фазу можно легко посчитать количество хромосом в клетке и изучить их строение.

В анафазе нити веретена деления укорачиваются, в результате чего хроматиды каждой хромосомы отделяются друг от друга и расходятся к противоположным полюсам клетки.

В телофазе хромосомы оказываются у полюсов клетки и деспирализуются (раскручиваются). Вокруг ядерного материала каждого полюса формируются ядерные оболочки. В двух образовавшихся ядрах образуются ядрышки. Нити веретена деления разрушаются.

На этом деление ядра заканчивается, и начинается деление клетки надвое. В экваториальной плоскости клеток растений из содержимого пузырьков комплекса Гольджи образуется срединная пластинка, которая разделяет две дочерние клетки, являющиеся копиями друг друга и исходной материнской клетки. С момента разделения дочерних клеток каждая из них вступает в интерфазу нового клеточного цикла.

Биологическое значение митоза заключается в том, что он обеспечивает передачу наследственных признаков и свойств от клетки к клетке, что необходимо для нормального развития многоклеточного организма. Митоз обуславливает важнейшие процессы жизнедеятельности – рост, развитие, восстановление повреждённых частей растения. Митотическое деление лежит в основе бесполого размножения многих живых организмов.

Клеточная гибель бывает двух видов: некроз и апоптоз. Рассмотрим, в чём же их отличия.

Что произойдет с клеткой если удалить ядро

Некроз – отмирание клеток, которое вызвано действием повреждающих факторов (низкие или высокие температуры, химические вещества, ионизирующие излучения). В повреждённых клетках нарушается проницаемость мембран, прекращается образование белков и другие процессы обмена веществ, происходит разрушение ядра, органоидов и, наконец, всей клетки.

Апоптоз – запрограммированная гибель клеток, которая регулируется организмом. От своего образования в результате деления до апоптоза клетки проходят определённое количество клеточных циклов.

Источник

Болезни и изменения клеточного метаболизма

Автор
Редакторы

Нейродегенеративные и онкологические болезни — самые распространенные возрастные патологии после болезней сердца и сосудов. Как показывают исследования, эти патологии тесным образом связаны с энергетическим обменом и митохондриальной дисфункцией. Детальное и масштабное изучение изменений клеточного метаболизма при развитии этих патологий способствует разработке более совершенных диагностических инструментов, позволяющих обнаруживать заболевание на самой ранней его стадии.

Что произойдет с клеткой если удалить ядро

Биоэнергетика

Спецпроект о клеточном энергетическом метаболизме, работе митохондрий и АТФ, а также о заболеваниях, связанных с нарушениями функций клеточных «батареек».

Спонсор спецпроекта — «БиоХимМак» — поставщик научного и медицинского оборудования в лаборатории России и стран СНГ.

Наверное, у каждого, кто начинает знакомиться с удивительной организацией наших клеток, возникает чувство восхищения невероятной сложностью внутриклеточного мира. Каждую секунду в миллиардах наших клеток протекают сложные и строго скоординированные процессы. И одним из таких очень важных процессов является производство в митохондриях главной энергетической молекулы — аденозинтрифосфата, или АТФ. Сегодня уже хорошо известно, что работа митохондрий очень тесно связана со здоровьем и продолжительностью жизни [1]. Митохондрии производят энергию для поддержания жизни, но при этом они же служат основными источниками активных форм кислорода, избыток которых для клеток губителен.

Энергетический обмен

Любой живой организм находится в постоянной связи с окружающей средой, непрерывно обмениваясь с ней веществом. В этом процессе можно выделить три этапа:

Внутриклеточный метаболизм, в свою очередь, включает в себя два типа реакций: катаболизм и анаболизм.

Катаболизм — это процесс расщепления и окисления органических молекул, приводящий к образованию тепла и энергетических молекул, АТФ. Именно за счет постоянного производства—расщепления последних съеденные нами калории направляются «по адресу»: гидролиз двух высокоэнергетических (макроэргических) связей в молекулах АТФ обеспечивает энергией всевозможные синтетические и транспортные процессы в клетках.

На первом этапе катаболизма под воздействием пищеварительных ферментов сложные органические соединения (белки, полисахариды, жиры) распадаются на более простые — аминокислоты, моносахариды, жирные кислоты и глицерин, — которые клетка использует для реакций анаболизма (пластического обмена) и получения энергии. Аминокислоты идут на синтез белков. Жирные кислоты выполняют энергетическую функцию, входят в состав клеточных мембран и служат субстратом для синтеза эйкозаноидов

На втором этапе происходит гликолиз — расщепление молекул глюкозы (рис. 1) до пировиноградной кислоты (ПВК). Дальнейший ход реакций зависит от присутствия или отсутствия кислорода в клетке. Если кислорода нет (анаэробный процесс), то ПВК у микроорганизмов и растений будет превращаться в этанол, а в организме животных — в молочную кислоту [2]. Каждый, кто подвергал себя тяжелым физическим нагрузкам, мог почувствовать конечный результат анаэробного метаболизма в виде боли и скованности в мышцах из-за скопившейся в них молочной кислоты.

Что произойдет с клеткой если удалить ядро

Рисунок 1. Реакции гликолиза. На 10 этапах гликолиза (пяти подготовительных и пяти этапах синтеза АТФ) из шестиуглеродной молекулы глюкозы образуются две трехуглеродные молекулы пировиноградной кислоты. Полученная от расщепления глюкозы энергия запасается в «энергетической валюте» клетки — двух молекулах АТФ и двух молекулах НАДФ.

Если же кислород в клетке есть, ПВК будет расщепляться на углекислый газ и воду и тоже высвобождать заключенную в углеводной молекуле энергию. Этот процесс называется аэробным клеточным дыханием и проходит в специальных органеллах — митохондриях. Окисление в митохондриях дает гораздо больше энергии, чем гликолиз.

Митохондрии и производство АТФ

Что произойдет с клеткой если удалить ядро

Рисунок 2. Митохондрия под электронным микроскопом.

Митохондрии — настоящее биологическое чудо, сотворенное эволюцией. Несмотря на очень маленький размер (в одной клетке может быть более 1000 митохондрий), эти органеллы поражают чрезвычайно сложной организацией (рис. 2). Они представляют собой вытянутые «пузырьки», окруженные двумя мембранами. Считается, что митохондрии сформировались в результате поглощения археями-фагоцитами пурпурных фотосинтезирующих бактерий, которые, приспосабливаясь к избытку кислорода, освоили аэробное дыхание [3], [4]. Мембраны митохондрий состоят из липидов и гидрофобных, нерастворимых в воде белков. (Здесь мы так подробно описываем строение митохондрий не случайно, а для того чтобы потом было понятно, как их нормальная работа и дисфункция влияют на здоровье.)

Строение мембран очень важно для процесса дыхания. Внешняя мембрана митохондрий — гладкая, а внутренняя — многократно складчатая. Эти складки (или кристы) позволяют увеличить рабочую площадь мембраны, что необходимо для размещения там всего комплекса белков, осуществляющих дыхание. Вначале окисляются углеродные атомы углеводов, жирных кислот и аминокислот до СО2 (гликолиз, цикл Кребса и β-окисление жирных кислот), а полученные таким образом электроны используются для образования НАДФ. Далее НАДФ окисляется молекулярным кислородом с образованием воды. НАДФ-оксидазная реакция сопровождается выделением очень большого количества свободной энергии (около 1,1 эВ при переносе одного электрона с НАДФ на кислород), которая может запасаться дыхательной цепью в виде трансмембранной разности электрохимических потенциалов ионов H+ (протонов).

Работа же дыхательных белков-ферментов похожа на работу насосов: передавая электроны друг другу, они перекачивают протоны в межмембранное пространство (см. видео 1). В результате внутренняя мембрана митохондрии заряжается подобно конденсатору. Создаются потенциалы: электрический (положительные заряды — снаружи митохондриальной мембраны, отрицательные — внутри органеллы) и химический (возникает разница концентраций протонов: внутри митохондрии их меньше, снаружи — больше). Известно, что электрический потенциал на мембране митохондрий, которая служит хорошим диэлектриком, достигает 200 мВ при толщине мембраны всего 10 нм [5]. Для сравнения: потенциал действия на мембранах нервных клеток при передаче сигнала достигает всего 30 мВ.

Видео 1. Как работает митохондрия

Накопившись в межмембранном пространстве, протоны, подобно электрическому току, устремляются назад, в митохондрию — туда, где их концентрация ниже. Однако они могут проходить только по специальным каналам АТФ-синтазы, встроенной во внутреннюю мембрану: протонный канал (ротор) этого фермента закреплен в мембране, а каталитический комплекс торчит внутрь митохондрии, в матрикс (рис. 3). Поток протонов раскручивает ротор, как река водяную мельницу. В результате ротор вращается с невероятной скоростью — 300 оборотов в секунду (см. видео 2)! И именно это вращение приводит к образованию высокоэнергетической молекулы — АТФ [6]. Подсчитано, что в сутки в организме взрослого человека синтезируется и расходуется около 40 кг АТФ, при этом жизнь каждой молекулы очень коротка.

Что произойдет с клеткой если удалить ядро

Рисунок 3. Схема дыхательной цепи митохондрий.

Видео 2. Работа АТФ-синтазы в мембране митохондрии

Всё вышесказанное имеет самое непосредственное отношение к старению. Дело в том, что в процессе дыхания ферменты работают не совсем «чисто», и в результате образуются побочные продукты — активные формы кислорода (АФК). Пока человек молод и здоров, образующиеся в митохондриях АФК не представляют для него ощутимой угрозы, так как легко нейтрализуются организмом. Но когда человек стареет, ведет нездоровый образ жизни или имеет генетическую предрасположенность к определенным болезням, его защитные системы дают сбой, рушась одна за другой.

Жирные кислоты и дисфункция митохондрий

То, что старение и возрастные патологии сопровождаются дисфункцией митохондрий, которые начинают производить меньше АТФ и хуже обновляться, уже ни у кого не вызывает сомнения. Выяснилось также, что дисфункция митохондрий и старение тесным образом связаны с повышением уровня свободных жирных кислот в крови [7], чему сильно способствуют малоподвижность и нерациональное питание. Жирные кислоты, попадая в клетку, способны напрямую снижать синтез АТФ, разобщая окисление и фосфорилирование. Этот связанный с терморегуляцией организма феномен был открыт еще шесть десятилетий назад академиком Скулачевым и его коллегами [8]. Снижение синтеза АТФ, в свою очередь, запускает сразу несколько негативных цепных реакций, связанных с возрастными болезнями и старением в целом.

И вот что происходит. Повышение уровня свободных жирных кислот в организме приводит к резистентности к инсулину: инсулинзависимые клетки перестанут реагировать на этот гормон. В результате нарушается усвоение глюкозы и жирных кислот, ухудшается окисление последних. Дело в том, что характерный для состояния инсулинорезистентности высокий уровень инсулина активирует целый каскад реакций, который блокирует работу фермента карнитинпальмитоилтрансферазы I (СРT1), участвующего в переносе жирных кислот внутрь митохондрий [9]. Из-за этого ухудшается синтез АТФ, а жирные кислоты накапливаются в цитоплазме клеток, вызывая эффект липотоксичности. Кроме резистентности к инсулину, избыток жирных кислот в организме вызывает резистентность к еще одному «пищевому» гормону — лептину. А из-за этого страдает функция одного из главных участников биогенеза (обновления) митохондрий — коактиватора рецептора гамма, активируемого пролифераторами пероксисом (PGC-1α). В итоге митохондрии производят меньше АТФ, стареют, погибают и провоцируют гибель клеток путем апоптоза [10].

Ну и наконец, избыток жирных кислот вызывает стресс эндоплазматического ретикулума (ЭПР) — внутриклеточного органоида, участвующего в синтезе белков и множестве других процессов. При стрессе ЭПР в цитоплазму высвобождаются ионы кальция, способные вызывать дисфункцию и гибель митохондрий [11]. Ионы кальция могут накапливаться в клетке и по другой причине — из-за ухудшения работы ионных насосов, откачивающих кальций из клетки. А причиной этому служит нарушение работы митохондрий, сопровождающееся снижением синтеза АТФ, без которого отказываются работать ионные насосы. В итоге формируется порочный круг: снижение выработки АТФ приводит к дисфункции митохондрий, что еще больше снижает выработку АТФ, и т.д.

Жирные кислоты, церамиды и повреждения нейронов

Как выяснилось, избыток жирных кислот и дисфункция митохондрий напрямую связаны с возникновением возрастных нейродегенеративных патологий. Надо сказать, что клетки нервной системы — самые уязвимые для возрастного окислительного стресса и снижения синтеза АТФ. Такая исключительная чувствительность нейронов к дефициту энергии и повышению генерации АФК объясняется несколькими причинами.

Во-первых, нервная ткань в силу своей физиологии нуждается в наибольшем потреблении кислорода. Вследствие этого в митохондриях нейронов происходит интенсивный окислительный метаболизм, который и становится основной причиной повышенной генерации АФК.

Во-вторых, из-за того, что мембраны нейронов содержат много ненасыщенных жирных кислот, они легко подвергаются перекисному окислению липидов. Так как активность антиоксидантных систем в ткани головного мозга ниже, чем в других органах, а с возрастом сокращается и количество некоторых ферментов-антиоксидантов, становится понятным, почему клетки нервной системы наиболее чувствительны к окислительным повреждениям [12].

В настоящее время известно несколько факторов, повреждающих нейроны. Среди них — белки, образующие внутри- и внеклеточные агрегаты (β-амилоидный белок и другие), а также церамиды и липофусцин. На их количество влияет прежде всего избыток жирных кислот в организме. Отягчающим обстоятельством в этом случае выступает чрезмерное содержание насыщенных кислот (пальмитиновой и стеариновой) в пищевом рационе. Всё это вместе служит мощным стимулом развития разнообразных нейродегенеративных заболеваний, таких как болезнь Альцгеймера [13], [14].

Но каким же образом пальмитиновая кислота может способствовать нейродегенерации? Установлено, что из-за избытка этой кислоты накапливаются церамиды, которые участвуют в регуляции терминальной дифференцировки, пролиферации и апоптоза нейронов. Посредством нескольких химических реакций они воздействуют на регуляторы клеточного цикла, повышая концентрацию ингибиторов киназ p21/SDI1 и p27/KIP1. Таким образом церамиды останавливают клеточный цикл, что, в свою очередь, активирует главного «стража генома» — белок р53 — и «насылает» на клетку апоптоз [15]. Кроме этого, при деградации церамида образуется вещество сфингозин, обладающее цитотоксическим действием и способное вызывать как апоптоз, так и некроз клеток. Но и это еще не всё. Обнаружено, что накопление насыщенных жирных кислот (пальмитиновой и стеариновой) стимулирует специальные клетки головного мозга (астроглию) на эндогенный (внутренний) синтез церамидов. Эти произведенные церамиды запускают цепную реакцию следующего вида: церамиды → повышение секреции провоспалительных цитокинов и оксида азота → увеличение производства АФК и окислительный стресс → активация стресс-регулируемых киназ (CDK5 и GSK-3) в нейронах → образование β-амилоидного белка и гиперфосфорилирование τ-белка [16].

Нейродегенеративные патологии и дисфункция митохондрий

Сегодня важнейшими и самыми распространенными нейродегенеративными патологиями считают болезни Альцгеймера, Паркинсона, Хантингтона, а также боковой амиотрофический склероз. Их возникновение связывают со структурными изменениями различных белков, приводящими к образованию внутриклеточных агрегатов. К таким белкам относятся:

Болезнь Альцгеймера (БА) — тяжелое нейродегенеративное заболевание, для которого характерны синаптическая дисфункция и гибель нейронов, что сопровождается снижением когнитивных способностей: ухудшением памяти и мышления, постепенной потерей социальных и моторных навыков [17]. В зоне риска развития болезни находятся в основном пожилые люди. Лишь 1–2% людей в возрасте до 65 лет страдают БА. Согласно одной из гипотез развития БА — амилоидной, — болезнь возникает из-за накопления в головном мозге агрегатов β-амилоида. Этот пептид состоит из 39–43 аминокислотных остатков и является фрагментом крупного трансмембранного белка под названием предшественник бета-амилоида (amyloid precursor protein, APP). Находясь в избытке, молекулы β-амилоида начинают «склеиваться» и образовывать нерастворимые бляшки (рис. 4). Именно в таком состоянии белок нарушает работу нервных клеток и вызывает симптомы БА. У страдающих БА в пораженных участках мозга находят большое количество амилоидных бляшек и нейрофибриллярных клубков [18].

Что произойдет с клеткой если удалить ядро

Рисунок 4. Образование амилоидной бляшки у генно-инженерных мышей (показано длинной стрелкой). На 6-й день уже видна дистрофия нейрона (короткая стрелка). Синим цветом обозначены отложения амилоида, зеленым — нейроны. Длина масштабной линейки — 20 мкм; снимки сделаны с помощью мультифотонного микроскопа.

Однако амилоидная гипотеза — не единственная, объясняющая возникновение БА. В 1993 году Аллен Роузес, профессор Университета Дьюка, предложил еще одну гипотезу возникновения БА — генетическую, связанную с геном APOE, кодирующим аполипопротеин Е (ApoE). Выяснилось, что наследование одного из вариантов гена APOE — APOE4 — в несколько раз повышает шансы заболеть БА. Всё больше исследователей склоняются к мысли, что β-амилоид излишне «демонизирован» и не является первопричиной развития БА. Неудавшаяся терапия, направленная на очистку клеток от β-амилоида, подтверждает, что с этой болезнью не всё до конца ясно [19].

Болезнь Паркинсона (БП) — еще одно тяжелое и довольно распространенное возрастное нейродегенеративное заболевание. У больных БП в нейронах черной субстанции накапливается α-синуклеин, который образует особые гранулы — тельца Леви. Надо сказать, что существует так называемая деменция с тельцами Леви, для которой характерно скопление многочисленных телец Леви в кортикальных и субкортикальных нейронах и развитие прогрессирующего когнитивного расстройства уже в первый год заболевания. Но пока не совсем ясно, считать ли эту деменцию формой БП или же правильнее ее рассматривать как отдельное заболевание. В случае БП скопления телец Леви приводят к дисфункции нейронов и их гибели, при этом характерно поражение областей мозга из состава так называемого нигростриарного дофаминового пути. Этот путь регулирует двигательную активность, снижая напряжение в мышцах. Вот почему, когда гибнут дофаминовые нейроны, у больных возникают соответствующие симптомы: нарастающее повышение мышечного тонуса и дрожание рук. Кроме нарушения моторных функций для БП характерны и другие симптомы, связанные с нарушением сна, депрессией, тревогой, ухудшением зрения и замедлением мышления [20].

Болезнь Хантингтона (БХ) — тоже не слишком редкое нейродегенеративное заболевание [21]. Как и в случае болезни Альцгеймера, для патогенеза БХ характерно образование токсичных белковых агрегатов с участием мутантных форм белков, которые синтезируются в нервной ткани. Но если к основному «виновнику» БА, β-амилоиду, у ученых есть вопросы, в случае с БХ сомнений гораздо меньше. Установлено, что именно генетические особенности — полиморфизмы определенных участков ДНК — приводят к появлению патологических форм белка хантингтина. Такой хантингтин способен к ассоциации с другими белками нервной ткани, в результате чего образуются нерастворимые токсичные агрегаты, повреждающие кору и полосатое тело головного мозга. Для БХ типичны всплески непроизвольной двигательной активности, эмоциональные расстройства и потеря памяти. В то же время нормальная физиологическая функция белка хантингтина в организме остается под вопросом. Предполагают, что он играет какую-то роль в эмбриогенезе [22].

Все три упомянутые патологии самым тесным образом связаны с дисфункцией митохондрий. Прежде всего, надо отметить, что ее развитие под действием дефектных белков, специфичных для нейропатологий, было установлено несколькими способами: in vitro (на клеточных линиях и внеклеточных системах) и in vivo (на трансгенных животных). Обнаружили и обратную связь: оказалось, что дисфункция митохондрий может стимулировать появление дефектных белков. Так, нарушение активности дыхательного комплекса I ведет к накоплению в нервных клетках гиперфосфорилированного τ-белка и α-синуклеина [23].

Со скоплением дефектных белков связали и уже упоминавшийся стресс эндоплазматического ретикулума. Один из таких белков, α-синуклеин, может снижать активность протеасом, что заканчивается стрессом ЭПР, увеличением производства АФК и инициацией апоптозных процессов. Это происходит потому, что из митохондрий высвобождается апоптозный фактор, цитохром С, который активирует «клеточных убийц» — каспазу-9 и каспазу-3 [24]. Как полагают, на начальных этапах нейродегенерации при БА накопление β-амилоида и гиперфосфорилирование τ-белка могут быть физиологическими механизмами защиты клетки от окислительного стресса, вызванного прогрессирующей митохондриальной дисфункцией. Однако при избыточном накоплении этих белков в клетке происходит сбой в работе митохондрий. Так, у пациентов с БА обнаружили, что β-амилоид накапливается в митохондриях и нарушает реакции гликолиза и цикла Кребса, активизирует продукцию АФК. Более того, β-амилоид способен напрямую подавлять синтез АТФ. Это возможно из-за структурного сходства белка с естественным ингибитором F(1)-субъединицы АТФ-синтазы митохондрий. Также β-амилоид может взаимодействовать с митохондриальной мембраной, формируя стабильные комплексы с двумя транслоказами, TOM40 и TIM23. Такие комплексы подавляют импорт в митохондрии белков, кодируемых ядерным геномом, — субъединиц IV и Vb цитохромоксидазы. На что органелла откликается увеличением производства агрессивного пероксида водорода.

Но и это еще не всё: белок — предшественник β-амилоида может формировать поры в мембранах митохондрий и других органелл, что нарушает ионный баланс в клетке и запускает ее апоптоз [25]. Также этот белок повышает активность фосфолипазы D, в результате изменяя фосфолипидный состав митохондриальных мембран, увеличивая концентрацию фосфатидилхолина, фосфатидилэтаноламина и фосфатидной кислоты и нарушая работу мембран. Известно, что β-амилоид может связывать гем, а это ведет к дефициту гема в клетке, из-за чего нарушается работа гем-содержащего IV комплекса электронтранспортной цепи митохондрий [26].

Но не только β-амилоид способен негативно влиять на митохондрии. В экспериментах с трансгенными грызунами, экспрессирующими ген хантингтина человека, обнаружили агрегацию этого белка в митохондриях с последующим развитием их дисфункции. Другой «зловредный» белок, α-синуклеин, накапливаясь во внутренней митохондриальной мембране, способен снижать активность дыхательного комплекса I. Как следствие, митохондрии увеличивают продукцию АФК [27]. Также обнаружено, что α-синуклеин, взаимодействуя с митохондриями, может стимулировать высвобождение из них цитохрома С, а значит, инициировать апоптоз.

В целом, можно сказать, что запуск апоптоза — характерный эффект белков, вызывающих нейродегенерацию. Они могут прямо или косвенно воздействовать на регуляторные белки, связанные с апоптозом: p53, Akt, Bad, Bax, Bcl-x(L) и кальцинейрин [28].

Также описано, что сверхсинтез белка — предшественника β-амилоида приводит к повреждению системы слияния—деления митохондрий. Негативно влияют на эту же систему и на утилизацию дефектных митохондрий аутофагосомами мутации гена паркина (PARK2), обнаруженные у больных БП. Дефектные формы τ-белка и хантингтина тоже мешают нормальной работе митохондрий, ухудшая тем самым энергообеспечение отростков нервных клеток и синаптическую передачу, вызывая дегенерацию синапсов [29].

Таким образом, белки, участвующие в развитии нейродегенеративных патологий, могут способствовать митохондриальной дисфункции посредством целого ряда механизмов. В свою очередь, уже возникшая дисфункция может усугублять патологические процессы, стимулируя появление дефектных белков и замыкая тем самым порочный круг развития болезни.

Эффект Варбурга

И напоследок стόит коснуться еще одного момента, связанного с патологиями и изменением клеточного метаболизма. В 1926 году немецкий биохимик Отто Варбург сравнил скорости образования молочной кислоты (лактата) в нормальных и опухолевых клетках. Оказалось, что опухолевые клетки потребляют очень много глюкозы, образуя при этом лактат. И делают это они гораздо быстрее, чем нормальные клетки: злокачественная ткань в эксперименте производила молочную кислоту в восемь раз активнее, чем это происходит в мышце, выполняющей физическую работу. Варбург установил, что раковые клетки используют гликолиз для получения энергии вне зависимости от доступности кислорода (рис. 5) [30]. В честь первооткрывателя этот феномен назвали эффектом Варбурга [2].

Что произойдет с клеткой если удалить ядро

Рисунок 5. Энергообеспечение нормальной и раковой клеток. Синим квадратом обозначена поступающая в клетку глюкоза.

Обнаружив этот эффект, Варбург логично предположил, что его можно объяснить дисфункцией митохондрий в опухолевых клетках и нарушением окислительного фосфорилирования. Сегодня эта точка зрения ставится под сомнение, так как и в перерожденной ткани обнаруживают большое количество нормально работающих митохондрий. Около половины всей энергии опухолевые клетки получают из молекул АТФ, произведенных в митохондриях [31]. Эффект Варбурга проявляется в клетках уже в самом начале их трансформации в опухолевые. И это дает возможность проводить раннюю диагностику неопластических процессов: как только клетка начала расходовать глюкозу в повышенных масштабах, пора бить тревогу. Обнаружить эти процессы можно с помощью позитронно-эмиссионной томографии с использованием фторированного аналога глюкозы, 2-( 18 F)-2-дезокси-D-глюкозы.

Но зачем раковые клетки переходят на анаэробный гликолиз? Сейчас считается, что так они получают преимущество, заранее подготавливаясь к «тяжелым временам» — развитию гипоксии. А кроме этого, такой способ энергообеспечения дает клеткам возможность использовать промежуточные продукты гликолиза для анаболических реакций, усиления своей антиоксидантной защиты и отражения иммунной атаки организма [32].

Таким образом, изменения в метаболизме глюкозы и появление дефектных белков и внутриклеточных агрегатов могут говорить о начале развития патологии. Своевременное выявление подобных внутриклеточных процессов может сыграть решающую роль в предупреждении и терапии самых распространенных нейродегенеративных и онкологических заболеваний. А для того чтобы это было возможным, необходимо изучать фундаментальные аспекты патологий, связанные с работой митохондрий и энергетическим обменом. Сегодня уже разработаны системы, позволяющие заглянуть «вглубь» этих заболеваний и даже провести диагностику на самой ранней стадии их развития. Подробнее об этих системах, принципах их действия и исследованиях с их использованием расскажут следующие статьи спецпроекта.

ЗАО «БиоХимМак» — спонсор спецпроекта по биоэнергетике

Компания более 25 лет успешно занимается поставками научного и медицинского оборудования российских и зарубежных производителей: Beckman Coulter, Bio-Rad, Molecular Devices, Thermo Fisher Scientific, UVP, Seahorse Bioscience (part of Agilent), Immucor, MRC Holland и др. «БиоХимМак» обслуживает более 5000 научных и медико-диагностических лабораторий в России и странах СНГ.

Отдел молекулярной диагностики (Life Science MDx)

Молекулярная онкология, преимплантационный скрининг, цитогенетика, пренатальные и постнатальные исследования, диагностика инфекций, наследственных, мультифакторных заболеваний, детекция генномодифицированных источников и бактериального загрязнения в продуктах питания, криминалистические приложения — это лишь неполный перечень областей, которые входят в сферу интересов отдела.

Основные направления деятельности отдела:

Отдел работает как с инновационной продукцией (MLPA, PGS и NGS исследования, клеточная биоэнергетика Agilent Seahorse Bioscience), так и с зарекомендовавшими себя мировыми брендами — Beckman Coulter, Bio-Rad, Molecular Devices, UVP, Thermo Fisher Scientific.

Материал предоставлен партнёром — компанией «БиоХимМак»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *