Что проводит электрический ток в вакууме
Электрический ток в жидкостях, в полупроводниках, в вакууме, в газах
теория по физике 🧲 постоянный ток
Напоминаем, что в каждой среде есть свои носители электрических зарядов. В металлах ими служат свободные электроны, в электролитах — положительные и отрицательные ионы, в газах — ионы и электроны, полупроводниках — электроны и дырки, в вакууме — электроны. Электрический ток может течь с переносом и без переноса вещества. Перенос вещества осуществляется только ионами.
Электрический ток в электролитах
Электролиты — жидкости, проводящие электрический ток. К ним относят растворы солей, щелочей и кислот.
Положительные ионы (катионы) движутся к катоду, а отрицательные (анионы) — к аноду.
Пример №1. Электрическая цепь, изображенная на рисунке, включает в себя сосуд со слабым раствором поваренной соли (NaCl) и опущенными в него двумя электродами. В каком направлении (вправо, влево, вверх, вниз) будут двигаться ионы натрия при замыкании ключа:
Электрический ток в полупроводниках
К полупроводникам относят элементы четвертой группы таблицы химических элементов Д.И. Менделеева, которые имеют 4 валентных электрона. Собственная проводимость полупроводников — электронно-дырочная.
При низкой температуре все электроны участвуют в создании ковалентных связей, свободных электронов нет, и полупроводник ведет себя как диэлектрик. При повышении температуры или облучении полупроводников часть ковалентных связей разрушается, и появляются свободные электроны. На месте разрушенной связи возникает электронная вакансия — дырка. Она также перемещается по кристаллу и ведет себя подобно положительной частице.
Зависимость удельного сопротивления полупроводников от температуры и внешнего излучения показана на графике.
В полупроводниках также может осуществляться примесная проводимость.
Донорные примеси — это элементы пятой группы таблицы химических элементов Д.И. Менделеева. Только 4 из 5 валентных электрона участвуют в создании ковалентных связей. Остальные сразу становятся свободными. Полупроводник, основными носителями в котором являются отрицательные электроны, относятся к полупроводникам n-типа.
Акцепторные примеси — элементы третьей группы таблицы химических элементов Д.И. Менделеева. Три валентных электрона устанавливают ковалентные связи, а не месте четвертой появляется дырка. Полупроводник с положительными носителями относится к полупроводникам p-типа.
Применение полупроводниковых приборов
Термисторы — приборы, сопротивление которых изменяется при нагревании. Они позволяют определять малые изменения температуры.
Фоторезисторы — приборы, аналогичные термисторам, но сопротивление в них изменяется не при изменении температуры, а при изменении освещенности.
Полупроводниковый диод — соединение полупроводников двух типов. Обладает односторонней проводимостью.
Электрический ток в вакууме
Получение основных носителей происходит за счет термоэлектронной эмиссией.
Термоэлектронная эмиссия — процесс испускания электронов при нагревании катода до высокой температуры.
Свойства электронных пучков:
Электрический ток в газах
Электрический ток в газах называют разрядом. Обычно газы состоят из нейтральных молекул, поэтому они являются диэлектриками. Чтобы появились носители электрического заряда, необходима затрата энергии.
Несамостоятельный разряд. При нагреве газа или при облучении его атомов могут отделиться электроны, и атомы превращаются в положительные ионы.
Самостоятельный разряд. В газах при столкновении молекул может освободиться хотя бы один электрон. Если он попадет в электрическое поле, то начнет двигаться с ускорением. Сталкиваясь с нейтральным атомом газа, ускоренный электрон может «выбить» из него другой электрон, превратив сам атом в положительный ион. Электроны будут и дальше ускоряться, разрушая атомы. Ионы создают ток в противоположном направлении. Таким образом, электрический ток в газах создается электронами и ионами.
На рис. 1 изображена зависимость силы тока через светодиод D от приложенного к нему напряжения, а на рис. 2 – схема его включения. Напряжение на светодиоде практически не зависит от силы тока через него в интервале значений 0,05 А
Общие сведения
Понятие вакуум сходно слову «пустота». В физике под ним понимают пространство, которое освобождено от любых веществ. Однако учёные считают, что такого места быть не может. Объясняют это они тем, что даже в самом пустом пространстве должны существовать флуктуации. Экспериментально это удалось доказать Генриху Казимиру, описавшему явление в своём конспекте.
Он предположил, что вакуум представляет собой «резервуар» в котором вблизи абсолютного нуля происходит ряд волнений. Его опыт состоял в следующем. Учёный взял две заряженные пластины и поместил их между вакуумным пространством. Под действием внешних фотонов проводники притягивались друг к другу. То есть через пространство проходила хотя и слабая, но сила.
Поэтому в физике существует особый термин — физический вакуум. Под ним понимают замкнутое пространство, в котором давление в несколько раз меньше по сравнению с газовой средой. То есть его величина не оказывает никакого влияния и ей можно пренебречь. Так как электричество образуется при перемещении элементарных носителей зарядов, которые в вакууме практически отсутствуют, при простом воздействии на среду его получить не удастся. Поэтому единственной возможностью пропустить ток через пустоту является добавление в неё заряженных частиц.
В 1879 году Эдисон, изучая причину перегорания нитей в лампах накаливания, обнаружил образование тёмного налёта около анодного вывода. Этот эффект изобретатель объяснял тем, что внутри колбы возникает разряд, вследствие которого заряженные частицы угольной пыли выбиваются с проводника. Он предположил, что если в лампу ввести дополнительный электрод с положительным зарядом, то эти частицы будут им притягиваться.
Так был открыт эффект термоэлектронной эмиссии. Другими словами, испускание заряженных частиц при нагреве проводника до температур 1500 — 2500 о С. При таких величинах электроны разрывают связи и высвобождаются. Это явление сродни испарению молекул с поверхности жидкости. Оно нашло своё применение в вакуумных электронных приборах. Например, используется в электронно-лучевых трубках, ламповых диодах.
Физика процесса
Электрический ток в вакууме может образовываться только направленным движением электронов. Ввести их, возможно, с помощью помещения в среду металла. Для того чтобы частицы покинули поверхность проводника нужно им отдать энергию. Этот процесс называется работой выхода электронов из вещества.
Её значение для разных материалов было установлено экспериментально. Так, для наиболее популярных веществ работа выхода равна:
То есть для того чтобы извлечь электрон, нужно сообщить ему определённую энергию. Только тогда он сможет вылететь с поверхности. В обычном состоянии энергия электрона в металле составляет 3,2 KT (тепловая). При комнатной температуре (T = 300 K) KT = 0,026 эВ. Этой величины будет явно недостаточно, чтобы появилась электропроводность в вакууме.
Если же нагреть тело до 3 тыс. градусов по кельвину (многие металлы начинают расплавляться), то KT = 0,26 эВ. Этого значения всё равно мало для того, чтобы выбить электроны. Но на самом деле носители имеют определённое распределение по энергиям. Найденное значение показывает среднюю величину. Поэтому в теле из-за высокой плотности заряженных частиц обязательно будут такие электроны, которые имеют энергию превышающую работу выхода.
Над поверхностью проводника появляется электронное облако. При этом чем выше температура, тем плотнее оно будет. Вылетевший электрон приводит к изменению заряда металла. В итоге он начинает втягиваться обратно. Устанавливается равновесие. Какое число электронов вылетает, такое же их количество возвращается.
Для того чтобы образовался поток зарядов нужно ввести вспомогательную цепь. Другими словами, сообщить электронам дополнительную энергию. Зависимость между током и напряжением в рассматриваемом случае не будет соответствовать закону Ома. Ведь образованное электронное облако задерживает вновь вылетающие электроны. Но если увеличить напряжение на другом выводе, то концентрация носителей в образованном поле уменьшится, значит, снизится и тормозящий эффект. Это приведёт к увеличению тока.
Таким образом, вылетающие электроны можно уподобить электра ракетам, преодолевшим земное притяжение. Если к выводу присоединить положительный электрод источника тока, то возникшее электромагнитное поле между спиралью и электродом внутри колбы с вакуумом, устремит к нему электроны. Внутри потечёт электрический ток.
Вакуумный диод
Одним из типичных устройств, использующих проводимость безвоздушного пространства, является вакуумная двухэлектродная электронная лампа. Если на её положительный вывод подаётся обратное напряжение, то все испущенные катодом электроны возвращаются. При прямом же смещении носители зарядов устремляются к аноду. Другими словами, происходит выпрямление переменного сигнала. Устройство работает как диод.
Исследовать появление электрического тока в вакууме и газах можно с помощью радиоэлемента, состоящего из следующих частей:
Нить из вольфрама находится в герметичной колбе и подключена через реостат к генератору для регулировки силы тока. Электрод подключён к микроамперметру. С него цепь, проходя через балластный резистор, замыкается на катоде.
Реостатом можно регулировать температуру катода. Переменным сопротивлением устанавливается разность потенциалов между положительным и отрицательным выводом. Вольт-амперная характеристика, то есть зависимость анодного тока от напряжения будет формироваться следующим образом. Допустим, напряжения нет. Тогда электроны, вылетевшие из катода, притянутся обратно. Ток в цепи анода не течёт. Если на вывод подать отрицательный сигнал, то электроны будут отталкиваться. Ток снова не течёт.
Когда на анод поступает положительное напряжение, то возникает электрическое поле. Оно создаёт силу, направленную в сторону анода. Скорость полёта электронов разная, так как некоторые из них отталкиваются от уже ранее вылетевших частиц. Чем больше будет напряжённость поля, тем сильнее начнёт протекать ток. Но изменение будет происходить не линейно. Например, если увеличить напряжение в два раза, то число электронов, вылетевших из катода, увеличится в больше раз, чем это число. Чем больше разность потенциалов, тем меньше пространственный заряд электронов.
Электронно-лучевая трубка
В вакуумных радиолампах поток электронов направлен от анода к катоду во все стороны. Но можно создать такие конструкции, в которых электроны будут направлены в одном направлении. Создаётся такой поток с помощью специальных фокусирующих пластин. Его часто называют катодным лучом. С его помощью можно нагревать тела, например, в вакуумных печах.
По своей природе он обладает следующими свойствами:
На этих свойствах и базируется класс вакуумных приборов называемый электронно-лучевыми трубками (ЭЛТ).
Устроено такое устройство следующим образом. Электроны в приборе образовываются с помощью термоэлектронной эмиссии. Катод прибора представляет собой цилиндр с плоским основанием, покрытым окисью бария. Этот электрод испускает электроны. Чтобы управлять их интенсивностью используется сетка. Подавая на неё напряжение, можно запирать поток или отпирать.
Главная деталь в определение электронного потока это его узкая направленность. Добиться этого можно, используя дополнительные анодные выводы. Один из них ускоряющий, а другой фокусирующий. Проходя через указанный набор ускоренный сфокусированный поток вылетает из ЭЛТ. На второй анод подаётся положительное напряжение напрямую, а на ускоряющий через реостат. Разность потенциалов кратна десяткам киловольт.
Вылетев с пушки поток, попадает на экран, покрытый люминофором. Вся эта система находится в колбе с безвоздушным пространством. Для того чтобы можно было перемещать луч по поверхности экрана используют конденсаторы. В зависимости от расположения их пластин происходит отклонение потока. Вызывает его подающееся на обкладки напряжение. От его значения луч может притягиваться к одной стороне или другой, по сути, изменяя поток электрического тока в вакууме. Так, кратко, и работает ЭЛТ.
Электрический ток в вакууме
В техническом смысле вакуумом называют пространство, количество вещества в котором, по сравнению с обычной газообразной средой, пренебрежимо мало. Давление в вакууме как минимум на два порядка ниже атмосферного, в таких условиях свободные носители заряда в нем практически отсутствуют.
Но как мы знаем, электрическим током называется упорядоченное движение заряженных частиц под действием электрического поля, в то время как в вакууме по определению нет такого количества заряженных частиц, которого было бы достаточного для образования устойчивого тока. Это значит, что для создания тока в вакууме необходимо каким-то образом добавить в него заряженные частицы.
В 1879 году Томас Эдисон открыл явление термоэлектронной эмиссии, которое на сегодняшний день выступает одним из проверенных способов получения свободных электронов в вакууме посредством нагревания металлического катода (отрицательного электрода) до такого состояния, что из него начнут вылетать электроны. Данное явление используется во многих вакуумных электронных приборах, в частности в электронных лампах.
Разместим два металлических электрода в вакууме и подключим их к источнику постоянного напряжения, затем начнем подогревать отрицательный электрод (катод). Кинетическая энергия электронов внутри катода при этом увеличится. Если дополнительно полученная таким образом энергия электронов окажется достаточной для преодоления потенциального барьера (для совершения работы выхода из металла катода), то такие электроны будут способны вылететь в пространство между электродами.
Поскольку между электродами присутствует электрическое поле (созданное выше упомянутым источником), электроны, попав в это поле, должны начать ускоряться в направлении анода (положительного электрода), то есть теоретически возникнет электрический ток в вакууме.
Но это возможно не всегда, а лишь в том случае, если электронный пучок будет в состоянии преодолеть потенциальную яму у поверхности катода, наличие которой обусловлено возникновением объемного заряда вблизи катода (электронное облако).
Для некоторых электронов напряжение между электродами окажется слишком низким по сравнению с их средней кинетической энергией, этого не хватит для выхода из ямы, и они вернутся назад, а для некоторых — достаточно высоким, чтобы электроны все же прошли дальше и стали ускоряться электрическим полем. Таким образом, чем выше приложенное к электродам напряжение — тем больше электронов покинут катод и станут носителями тока в вакууме.
Итак, чем выше напряжение между расположенными в вакууме электродами — тем меньше глубина потенциальной ямы возле катода. В результате получается, что плотность тока в вакууме при термоэлектронной эмиссии связана с напряжением на аноде соотношением, называемым законом Ленгмюра (в честь американского физика Ирвинга Ленгмюра) или законом трех вторых:
В отличие от закона Ома, связь здесь нелинейна. Причем с увеличением разности потенциалов между электродами, плотность тока в вакууме будет расти до тех пор, пока не наступит насыщение — условие, когда все электроны из электронного облака у катода достигают анода. Дальнейший подъем разности потенциалов между электродами не приведет к усилению тока. Р
азные катодные материалы обладают разной эмиссионной способностью, характеризуемой током насыщения. Плотность тока насыщения можно определить по формуле Ричардсона-Дешмана, связывающей плотность тока с параметрами материала катода:
Данная формула была получена учеными на основе квантовой статистики.
III. Основы электродинамики
Тестирование онлайн
Электрический ток в жидкостях
Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.
В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.
Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит
Второй закон Фарадея:
Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.
Электрический ток в металлах
При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.
Применение электрического тока в металлах
Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.
Электрический ток в газах
Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.
Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.
Прохождение электрического тока через газ называется газовым разрядом.
Электрический ток в вакууме
Электрический ток в вакууме
Электрический ток в вакууме
Термоэлектронная эмиссия
Как свободные электроны могут появиться в вакууме? Благодаря явлению термоэлектронной эмиссии, открытому Томасом Эдисоном в 1879 году.
Определение. Термоэлектронная эмиссия
Металлы являются наилучшими проводниками, так как имеют свободные электроны, которые иногда еще называют электронным газом. При нагревании металла энергия электронов (измеряется в электронвольтах) увеличивается и они могут «вырваться» из металла. Для того, чтобы вылететь из металла, электрон должен обладать энергией, превышающей работу выхода электронов для этого металла.
Термоэлектронный ток
Испущенные металлом свободные электроны образуют у поверхности металла электронное облако. Если создать в данной области электрическое поле, электроны начинают двигаться под действием сил поля. Иными совами, возникает электрический ток, называемый термоэлектронным.
Определение. Термоэлектронный ток
Так, если в вакууме поместить две металлические пластины и создать между ними разность потенциалов и условия для термоэлектронной эмиссии, возникнет термоэлектронный ток.
Вакуумный диод представляет собой баллон с откачанным воздухом, содержащий электроды: катод и анод. Электроны выбиваются из катода и летят к аноду.
Для вакуумного диода не выполняется закон Ома. При небольших значениях напряжения на аноде имеет место формула зависимости силы электрического тока от напряжения:
При увеличении разности потенциалов между электродами сила тока будет расти. Однако, для термоэлектронного тока существует понятие тока насыщения. Это ток такой силы, при котором все электроны из электронного облака достигают другой анода. При достижении силы тока насыщения и дальнейшем росте разности потенциалов, сила тока насыщения не меняется.
Эмиссионную способность материала катода характеризует плотность тока насыщения, которая определяется по формуле Ричардсона-Дешмана: