Чем измеряется ускорение каким прибором
В чем измеряется ускорение в физике? Центростремительное и угловое ускорение. Измерение ускорения свободного падения
При решении задач по физике часто приходится выводить рабочие формулы с учетом предоставленного условия. Одной из самых надежных проверок правильности полученной формулы является совпадение единиц измерения в правой и левой частях равенства. В данной статье рассмотрим вопрос, в чем измеряется ускорение.
Что такое ускорение?
Вам будет интересно: «Понурый» – это о положении головы и уровне настроения
Для определения мгновенного ускорения используют следующее выражение:
Взяв первую производную по времени от скорости, мы получим зависимость ускорения от t.
Помимо мгновенного ускорения (значение a¯ в конкретный момент времени), на практике часто применяют среднее ускорение. Оно определяется так:
В чем измеряется ускорение?
Несложно ответить на этот вопрос, если рассмотреть записанные в предыдущем пункте формулы для мгновенной и средней величины. Как известно, скорость определяется в метрах в секунду (м/с). Конечно, можно применять и другие единицы измерения для v¯, например, километры или мили в час, однако мы ведем разговор о единицах международной системы СИ. Время в СИ измеряется в секундах (c). Взяв отношение этих величин, приходим к ответу на вопрос, в чем измеряется ускорение. Его единицами являются метр в квадратную секунду или сокращенно м/с².
Что означает запись: a = 1 м/с²? Это означает, что за каждую секунду перемещения тело увеличивает свою скорость на 1 м/с.
Далее будут приведены другие возможные единицы измерения ускорения, однако м/с² является базовой, и все другие единицы сводятся к ней.
Сила и ускорение
Записанное выше математическое определение ускорения не содержит никакой информации о том, откуда оно появляется, и что заставляет тела ускоряться. Ответы на эти вопросы можно понять, если вспомнить, в чем состоит второй закон Ньютона. Он гласит, что как только появляется ненулевая внешняя сила F¯, действующая на тело массой m, то она неминуемо ведет к появлению ускорения a¯. Соответствующее выражение записывается в виде:
Мы можем, используя эту формулу, определить, в чем измеряется ускорение в данном случае. Сила выражается в ньютонах, а масса в килограммах, тогда получаем:
Ньютон не является базовой единицей в системе СИ, поэтому Н/кг редко применяется в задачах для выражения ускорения. Тем не менее, эту единицу можно встретить в некоторых задачах по динамике движения.
Движение по окружности
Мы специально выделили в отдельный пункт статьи вопрос перемещения тела по окружности. Дело в том, что во время вращения вокруг некоторой оси изменяться может не только абсолютное значение скорости тела, но и ее направление. Такой характер движения приводит к появлению у тела двух компонентов ускорения: нормального или центростремительного и тангенциального или касательного.
Что касается центростремительной компоненты ускорения, то для ее вычисления используют следующую формулу:
Таким образом, нормальное ускорение измеряется в тех же единицах, что и полное ускорение (м/с²).
Измерение ускорения свободного падения
Это ускорение (его будем обозначать буквой g) возникает за счет действия на все тела, которые нас окружают, силы тяжести Земли. Среднее значение g на нашей планете равно 9,81 м/с², тем не менее эта величина колеблется на несколько процентов в зависимости от местности.
Наука, которая занимается измерением величины g, называется гравиметрией. Отвечая на вопрос, каким прибором измеряется ускорение, следует сказать, что это или абсолютный, или относительный гравиметр. Абсолютный гравиметр измеряет g в лоб, рассчитывая время падения тела в безвоздушном пространстве с некоторой высоты. Относительный гравиметр представляет собой пружину с грузом, удлинение которой калибруется согласно некоторому известному ускорению g в данной местности.
С помощью гравиметра ускорение свободного падения измеряется в галах. Эта единица названа в честь Галилея, который впервые в истории использовал математический маятник для вычисления ускорения g. Один гал равен сотой части м/с².
Измерение g в данной местности проводят с целью анализа состава горных пород, во время поиска полезных ископаемых или подземных вод. Применяют гравиметры также в археологии и сейсмологии.
Единицы измерения ускорения.
Ускорение – это физическая величина (a, от лат. acceleratio), характеризующая быстроту изменения скорости тела. Ускорение является векторной величиной, показывающей, насколько изменяется вектор скорости тела при его движении за единицу времени:
Рассмотрим движение автомобиля. Трогаясь с места, он увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус.
Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:
Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчета.
Равнопеременное движение точки – это движение с постоянным ускорением,
Под словом равнопеременное понимают:
2. Равнозамедленное движение – если модуль скорости уменьшается, т.е. ускорение антипараллельно скорости: .
Поскольку ускорение равнопеременного движения постоянно, оно равно изменению скорости за любой конечный интервал времени:
где — скорость в начальный момент времени, принятый за нуль;
— текущее значение скорости (в момент времени t). Формула для определения ускорения из состояния покоя (равноускоренное движение, начальная скорость равна нулю:
имеет вид:
Если же нулю равна не начальная, а конечная скорость ( торможение при равнозамедленном движении), то формула ускорения принимает вид:
При движении по криволинейной траектории изменяется не только модуль скорости, но и ее направление. В этом случае вектор ускорения представляют в виде двух составляющих: тангенциальной – по касательной к траектории движения, и нормальной – перпендикулярно траектории
В соответствии с этим проекцию ускорения на касательную к траектории называют касательным или тангенциальным ускорением, а проекцию
на нормаль – нормальным или центростремительным ускорением.
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Направление вектора тангенциального ускорения совпадает с направлением линейной скорости или противоположно ему. То есть, вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть, вектор нормального ускорения перпендикулярен линейной скорости движения. Нормальное ускорение характеризует изменение скорости по направлению. Вектор нормального ускорения направлен по радиусу кривизны траектории.
Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
.
Каким прибором измеряется ускорение
Ускорения измеряются в метpax на секунду в квадрате (м/с 2 ). В качестве единицы измерения ускорения часто применяют величину, связанную с ускорением земного притяжения — g. Например, ускорение, равное 0,1g; l0g и т.д. Ускорения могут быть линейными и угловыми. Средства измерения ускорений называются акселерометрами.
Инерциальный метод
Для измерения линейных ускорений применяются инерциальный метод, метод дифференцирования скорости и метод двухкратного дифференцирования расстояния до неподвижной базы.
Рис. 8.33. Средства измерения ускорений: а — схема акселерометра (1 — инерционная масса; 2 — пружина; 3 — электромагнит; 4 — корпус прибора; 5- демпфер; 6 — преобразователь; 7- ось; У- усилитель); б — схема маятникового акселерометра (1 — подвеска; 2 — жидкость; 3 — корпус; 4 — чувствительный элемент; 5 — преобразователь; У- усилитель); в — схема струнного акселерометра (7 и 5- струнный преобразователь; 2 и 4- струна; 3 — упругий подвес; 6- генератор; 7 — механизм натяжения струн; 8- регулирующее устройство); г — схема акселерометра с волоконно-оптическим преобразователем (1 — источник света; 2 — акселерометр; 3 и 8 — линза; 4 — поляризатор; 5 — фотоупрутий материал; 6 — четвертьволновая пластина; 7 — анализатор; 9 — волоконный светопровод; 10 — приемник излучения — фотодиод)
Инерциальный метод основан на измерении силы, развиваемой инерционной массой при ее движении с ускорением. Принцип действия средств измерений, реализующий инерциальный метод, состоит в следующем (рис. 8.33, а). Инерционная масса 7, связанная с корпусом прибора 4 с помощью пружины 2 и демпфера 5, может перемещаться в направлении оси 7, называемой осью чувствительности. Перемещение инерционной массы, пропорциональное измеряемому ускорению, преобразуется посредством резистивных, индуктивных или емкостных преобразователей 6 в электрический сигнал, который после усиления в усилителе поступает на электромагнит 3. Последний создает усилие F, уравновешивающее инерционную силу тах, т.е.
Методы дифференцирования
Методы одно- или двухкратного дифференцирования сводятся соответственно к дифференцированию измеренных скорости или расстояния до неподвижной базы.
Акселерометры
Рассмотрим некоторые возможные схемы акселерометров (рис. 8.33, б, в, г).
Основными элементами акселерометров являются подвесы инерционных масс, преобразователи сигналов, моментные (силовые) устройства, усилители сигналов и корректирующие устройства (демпферы).
Для уменьшения потерь в осях подвеса, обеспечения линейной зависимости между отклонениями массы и измеряемым ускорением подвес помещают в жидкость с удельным весом, равным удельному весу чувствительного элемента, либо устанавливают его на воздушной подушке, на струнах. Применяют также электромагнитные и криогенные подвесы.
В качестве преобразователей сигналов применяются емкостные, индуктивные, фотоэлектрические, струнные и др. Основные требования к ним: большая разрешающая способность, линейная зависимость выхода от входа, отсутствие реакции преобразователя на чувствительный элемент.
Моментными (силовыми) устройствами для ввода сигналов обратной связи являются моментные двигатели (электродвигатели, работающие в заторможенном режиме) и электромагниты.
Маятниковый аеселерометр
В маятниковых акселерометрах (см. рис. 8.33, б) чувствительный элемент 4 находится в жидкости 2, заключенной в корпусе 3. Температура жидкости поддерживается с точностью до 0,01 «С, что позволяет устранить ее конвективные движения. Сигнал с чувствительного элемента снимается преобразователем 5 и подается на усилитель У. С выхода усилителя сигнал поступает на моментный двигатель, развивающий момент, зависящий от ускорения.
Струнный акселерометр
В акселерометрах со струнными преобразователями 1 и 5 (см. рис. 8.33, в) смещение массы т меняет упругие свойства струн 2 и 4. натянутых в направлении оси чувствительности. Упругий подвес 3 исключает движение массы т в поперечном направлении. Сумма частот колебаний струн 2 и 4 (f1 +f2) поддерживается постоянной посредством регулирующего устройства 8, для чего она сравнивается с эталонной частотой f0, вырабатываемой генератором 6. Разность Δf = (f1 +f2)-fo используется для управления механизмом 7 натяжения струн. При поддержании значения (f1 +f2) постоянным получается линейная зависимость между измеряемым ускорением ах и разностью частот Δf.
Струнные акселерометры находят применение в инерциальных системах управления. При диапазоне измерения ускорений до 20 g погрешность не превышает ±0,004 %.
Акселерометр с преобразователем
Акселерометр с волоконно-оптическим измерительным преобразователем основан на эффекте фотоупругости. Некоторые материалы (эпоксидная смола, нитрат лития и др.) меняют свои оптические свойства при их деформировании. На этой основе создан целый ряд средств измерения, в которых сила преобразуется в деформацию. На рис. 8.33, г источник света 1 (например, полупроводниковый лазер), проходя через линзу 3 и поляризатор 4, поступает на стержень из фотоупругого материала 5, изменяющий свое напряженное состояние в зависимости от ускорения груза акселерометра 2. Преобразуя полученный сигнал с помощью четвертьволновой пластины 6, анализатора 7 и линзы 8, он поступает по волоконному светопроводу 9 на приемник излучения (фотодиод) 10. В результате определяется величина ускорения с достаточно высокой точностью. Так, при массе груза 25 г чувствительность рассмотренного акселерометра составляет 0,01g.
Каким прибором измеряется ускорение
Часы прибор для измерения времени — Содержание: 1) Исторический очерк развития часовых механизмов: а) солнечные Ч., b) водяные Ч., с) песочные Ч., d) колесные Ч. 2) Общие сведения. 3) Описание астрономических Ч. 4.) Маятник, его компенсация. 5) Конструкции спусков Ч. 6) Хронометры … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
ИЗМЕРЕНИЯ И ВЗВЕШИВАНИЕ — Измерения служат для получения точного, объективного и легко воспроизводимого описания физической величины. Не производя измерений, нельзя охарактеризовать физическую величину количественно. Чисто словесные определения низкая или высокая… … Энциклопедия Кольера
морской маятниковый прибор — 41 морской маятниковый прибор Маятниковый прибор, предназначенный для измерений силы тяжести с борта судна. Источник: ГОСТ Р 52334 2005: Гравиразведка. Термины и определения оригинал документа 60. Морской маятниковый прибор Маятниковый при … Словарь-справочник терминов нормативно-технической документации
Маятниковый прибор — инструмент для измерения ускорения силы тяжести относительным методом (см. Гравиметрия). Гравиметрические исследования с помощью М. п. основываются на измерении разности зависящих от ускорения силы тяжести периодов свободных колебаний… … Большая советская энциклопедия
маятниковый прибор — Динамический гравиметр, в котором для измерения силы тяжести измеряется период колебаний одного или нескольких физических маятников. [ГОСТ Р 52334 2005 ] маятниковый прибор Прибор для определения ускорения свободного падения, основанный на… … Справочник технического переводчика
СП 151.13330.2012: Инженерные изыскания для размещения, проектирования и строительства АЭС. Часть II. Инженерные изыскания для разработки проектной и рабочей документации и сопровождения строительства — Терминология СП 151.13330.2012: Инженерные изыскания для размещения, проектирования и строительства АЭС. Часть II. Инженерные изыскания для разработки проектной и рабочей документации и сопровождения строительства: 7.2.11.9 Геотехнические… … Словарь-справочник терминов нормативно-технической документации
ГКИНП 11-140-81: Руководящий технический материал. Топографо-геодезические работы на шельфе и внутренних водоемах. Термины и определения — Терминология ГКИНП 11 140 81: Руководящий технический материал. Топографо геодезические работы на шельфе и внутренних водоемах. Термины и определения: 36. Автономный подводный аппарат Подводный съемочный аппарат, обладающий автономностью… … Словарь-справочник терминов нормативно-технической документации
Гравиметр — (от лат. gravis тяжёлый и греч. metreo измеряю * a. gravimeter; н. Gravimeter, Schweremesser; ф. gravimetre; и. gravimetro) прибор для измерения ускорения силы тяжести. Aбс. измерения (полной величины ускорения силы тяжести) производятся… … Геологическая энциклопедия
Акселерометр — (от лат. accelero ускоряю и греч. metréō измеряю) прибор для измерения ускорения (перегрузок), возникающего на космических летательных аппаратах, ракетах, самолётах и др. движущихся объектах, при испытаниях машин, двигателей и т. д.… … Большая советская энциклопедия
Гравиметр — CG 5 Гравиметр (от лат. gravis тяжёлый + meter) прибор для измерения уско … Википедия
Измеритель скорости. Виды и работа. Применение и особенности
Измеритель скорости является востребованным прибором, который используется для различных целей. Он измеряет скорость движения объектов и веществ в километрах в час или метрах в секунду.
Виды измерителей скорости
Измеритель скорости очень точное оборудование, которое используется практически повсеместно в различных отраслях промышленности и бытовой жизни. Его конструкция многократно модернизировалась под определенные цели.
Существуют следующие разновидности измерителей скорости:
Спидометр
Спидометр – это прибор для измерения скорости колесных транспортных средств. Он устанавливается на панель приборов автомобилей, сельхозтехники, спецтехники и поездов. Он бывает механическим, электронным и электромеханическим.
Механическое устройство оснащается тросом, который выполняет роль привода. Трос подсоединяется к коробке передач или напрямую к оси колеса. Один его оборот соответствует обороту колеса и соответственно прохождению определенной дистанции. Специальный механизм с шестеренками оперативно проводит расчет соответствия пройденной дистанции за определенный промежуток времени к скорости в километрах в час. Подобное оборудование оснащается цифровой шкалой и стрелкой, которая указывает на достигнутую скорость. Механические спидометры используются и сейчас. Их главный недостаток заключается в периодическом износе троса, который необходимо менять. Помимо текущего показания скорости механические модели имеют встроенный в корпусе циферблат, показывающий пробег транспорта с момента начала его эксплуатации.
Электронные спидометры оснащаются датчиками, передающими информацию в электронном виде на циферблат на панели приборов. Она отображается как светящиеся цифры. Отсутствие стрелок позволяет проводить более комфортную визуальную оценку показателей скорости движения.
Электромеханические спидометры являются гибридом двух типов. В них снятие показателей осуществляется электрическим датчиком, но вывод данных о развиваемом темпе движения проводится с помощью стрелки.
Радар
Радар – это прибор предназначенный для измерения скорости движущегося объекта без физического контакта с ним. Обычно такое оборудование применяется правоохранительными органами, а также спортивными судьями. Принцип действия прибора заключается в том, что он создает радиосигнал, который направляется на движущийся объект. После при достижении волны к автомобилю или другому объекту, волна отражается и возвращается на чувствительный элемент устройства. По характеристикам отражаемой волны прибор вычисляет скорость, с которой двигался объект. Существует также устройство, где вместо радиосигнала направляется луч лазера. Выдаваемая на циферблате скорость выражается в километрах за час.
Данное оборудование является не идеальным и дает небольшую погрешность, которая указывается производителем. Радары отличаются между собой не только по классу точности, но и дистанции измерения. Все зависит от мощности излучателя и чувствительного элемента, который принимает отраженные сигналы.
Современные радары существенно отличаются от первых устройств этого класса. Дело в том, что в связи с наличием штрафов за превышение скорости, для защиты от подобных неприятностей началось производство так называемых антирадаров. Данные оборудования позволяют глушить радиосигналы и сбивать показатели, которые выдает радар. В связи с этим полицейские измерители скорости начали оснащаться системой шифрования с особой технологией отправки импульсов и их восприятия. Нельзя сказать, что это дает стопроцентную гарантию от погрешности, но по крайней мере позволяет игнорировать глушение от большинства приборов подавляющих сигналы.
Анемометр
Анемометр – это измеритель скорости передвижения воздушных и газовых потоков. Принцип его действия заключается в наличии лопастей подобных тем, что используются в вентиляторах или в авиации. При прохождении ветра сквозь диффузор анемометра лопасти начинают проворачиваться. Специальный механизм измеряет частоту вращения и определяет скорость движения потока в километрах в час или метрах в секунду. Такое оборудование обычно используется метеорологами для расчетов изменения погоды. По характеристикам движения ветра определяется через сколько времени циклон достигнет определенной местности.
В бытовой жизни анемометры нашли свое применение в авиации. Они устанавливаются на аэродромах для определения параметров силы ветра с целью корректировки диспетчерами пилотов при посадке самолетов. Анемометрами пользуются военные снайперы для корректировки направления полета пули. С помощью специальных таблиц определяется угол сноса пули ветром при полете. Чем слабее воздушный поток, тем по более ровной траектории нужно выпускать пулю. Данный показатель является важным при стрельбе на длинные дистанции.
Анемометры используются в вентиляционных системах. С их помощью проводится регулировка вентиляторов для точной настройки вентилирования без создания сквозняков. Вывод показателей скорости осуществляется с помощью стрелки как в обычных спидометрах для автомобиля или на циферблат, если прибор является электронным или электромеханическим.
Подобное оборудование не всегда имеет механический привод. Существуют также анемометры с теплочувствительным элементом, который начинает деформироваться при остывании. При движении воздушного потока чувствительный элемент обдувается, и его температура снижается. При этом оборудованием проводятся сложные расчеты, в результате которых выводятся точные показатели скорости ветра с поправкой на температуру самого воздуха. Одними из последних изобретений стали ультразвуковые анемометры, которые анализируют растворение звука посылаемого против движения воздушных масс.
Хронограф
Хронограф снимает характеристики о полете пули или другого мелкого объекта в метрах за секунду. Также отдельные модели могут иметь возможность переключения показателей на километры в час. Хронографы имеют сложную конструкцию и являются очень чувствительными. Те приборы, которые применяются для измерения скорости движения пуль и прочих боеприпасов выполняются в двух вариантах – дульном и рамочном.
Рамочный хронограф является более универсальным. Он выполнен в виде рамки, в которую нужно прицелиться, чтобы пуля пролетела между стенками. С помощью такого хронографа можно измерить скорость движения практически любого мелкого объекта. Это может быть стрела и даже брошенный рукою камень. Подобное оборудование более габаритное, но благодаря универсальности пользуется большой популярностью.
Измеритель скорости газового потока
Также существуют измерители скорости для газовых и воздушных потоков, которые двигаются внутри труб. Данные устройства фиксируются на трубопроводах и оснащаются крыльчаткой, которая проворачивается при контакте со средой. Подобное оборудование имеет много общего со счетчиками газа, но в отличие от них оно показывает не какой объем был пропущен всего, а позволяет рассчитать, сколько газа при такой интенсивности перекачки можно провести за определенный промежуток времени. Подобное оборудование выдает показатели не только в метрах за секунду, но и в объеме. Это могут быть литры или кубические метры.
Интенсивность давления на крыльчатку в различных газах отличается. В связи с этим оборудование калибруется производителем под среду, с которой будет работать. Таким образом, если измеритель скорости рассчитан для природного газа, он не будет давать точные показатели в случае работы с углекислотой. Помимо оборудования для веществ в жидком состоянии, существуют и измерители для газообразной среды, такой как воздух и даже пар.
Скоростемер для воды
Измеритель скорости воды имеет подобную конструкцию, что и для газовой среды. Его используют в исключительных случаях, когда нужно узнать скорость движения водяного потока, а не объем прокачки. Данный показатель является важным при тестировании оборудования для пожаротушения, водяных пушек и в прочих целях. Такой скоростемер представляет собой вытянутую трубку, которая подсоединяется к гибкому шлангу или трубопроводу. Кроме устройств с вращающейся крыльчаткой, снятие показателей может осуществляться лазером или ультразвуковыми волнами.
Измерение скоростей и ускорений
Так как скорость и ускорение взаимосвязаны с изменяющимся перемещением, то для их измерения могут быть использованы преобразователи перемещения, выходной сигнал которых подвергается дифференцированию. При выполнении дифференцирования аналогового сигнала в зависимости от вида сигнала и требуемой точности применяют пассивные дифференцирующие цепи, трансформаторы (ЭДС на вторичной обмотке пропорциональна скорости изменения магнитного потока) и активные дифференцирующие цепи (на базе операционных усилителей).
Рисунок 16.28 — Тахогенератор
Индукционные преобразователи скорости. Принцип действия индукционных преобразователей рассмотрен на рисунке 16.28, где изображен индукционный преобразователь, выходной сигнал которого пропорционален скорости линейного перемещения катушки. Широкое распространение на практике получили индукционные преобразователи угловых скоростей (тахогенераторы). На рисунке 16.28 схематически показан тахогенератор с вращающимся постоянным магнитом. В зазоре магнитопровода расположен постоянный магнит, связанный с контролируемым объектом. При вращении магнита изменяется магнитный поток, пронизывающий обмотку ω. Подбирая определенную форму магнита и полюсов магнитопровода, можно добиться синусоидального изменения магнитного потока в магнитопроводе при вращении магнита. Амплитуда выходного напряжения и его частота пропорциональны частоте вращения о магнита. Существуют также тахогенераторы переменного тока с вращающимся ферромагнитным якорем, в которых магнитный поток создается дополнительной обмоткой возбуждения, а при вращении якоря изменяется магнитное сопротивление цепи, и тахогенераторы переменного тока с короткозамкнутым ротором. Иногда используются тахогенераторы постоянного тока, представляющие собой генератор с коллектором и щетками и возбуждением от постоянных магнитов или от внешнего источника постоянного тока. Электростатические преобразователи скорости. В простейшем случае электростатический преобразователь скорости выполнен в виде конденсатора, одна из пластин которого перемещается относительно другой со скоростью V, Принцип действия таких преобразователей основан на следующем явлении: при изменении емкости С конденсатора.
Рисунок 16.29 — Преобразователь скорости с электретом
Рисунок 16.30 — Индукционный преобразователь скорости.
Индукционный преобразователь скорости, к которому приложено постоянное напряжение U, его зарядный ток (изменяется пропорционально скорости изменения емкости) вычисляется по формуле (16.34)
i = dq/dt == U (dC/dt), (16.34)
где q=UC — заряд конденсатора.
Если изменение емкости пропорционально перемещению пластины конденсатора, то выходной ток пропорционален скорости этого перемещения.
Преобразователи скорости с вязким трением. Принцип действия этих преобразователей основан на зависимости усилия от скорости перемещения тела, преодолевающего вязкое трение. В преобразователях скорости гидравлической системы поршень, связанный с контролируемым объектом, движется в цилиндре с жидкостью. При этом на цилиндр действует сила, пропорциональная скорости.
Широкое распространение получили преобразователи скорости индукционной системы (рисунок 16.30). Преобразователь состоит из постоянного магнита 1 и диска 2 из электропроводного материала, укрепленных на полуосях. Между диском и магнитом имеется воздушный зазор. При перемещении магнита относительно диска в последнем индуцируются вихревые токи, взаимодействие которых с потоком постоянного магнита создает момент, вращающий диск 2. С помощью спиральной пружины 3 этот момент преобразуется в угол поворота α. В результате угол поворота α пропорционален угловой скорости ω вращения магнита. В дальнейшем этот угол α преобразуют в электрический сигнал преобразователем угловых перемещений.
Корреляционный и доплеровский методы измерения скорости. Сущность корреляционного метода измерения скорости можно проиллюстрировать на примере измерения скорости движения ленты (рисунок 16.31). Лента 1 движется со скоростью V. На расстоянии 1 друг от друга установлены две оптические системы, содержащие осветители 2 и 5 и оптоэлектрические преобразователи 3 и 6. Выходные сигналы преобразователей 3 и 6 усиливаются усилителями 4 и 7 и подаются на входы коррелятора 9, причем сигнал с выхода усилителя 4 проходит через блок регулируемой задержки 8. Неоднородность поверхности контролируемой ленты приводит к модуляции яркости сигналов, воспринимаемых оптоэлектрическими преобразователями, и соответственно к модуляции электрических сигналов на выходах усилителей 4 и 7. Очевидно, что взаимная корреляционная функция этих сигналов будет иметь максимум при временном сдвиге τх=l/V, равном времени прохождения лентой расстояния /между оптическими системами. Задержка сигнала с выхода усилителя 4 на время τх осуществляется блоком регулируемой задержки 8, который управляется сигналом с выхода экстремального регулятора 10, обеспечивающего максимальное значение сигнала на выходе коррелятора 9. Величина у, пропорциональная задержке τх сигнала в блоке 8, выводится на отсчетное устройство 11, шкала которого может быть проградуирована непосредственно в единицах скорости движения. Корреляционный метод измерения скорости находит практическое применение в таких задачах, как измерение скорости проката, скорости движения судна (относительно дна водоема) и т. п. При этом обеспечивается весьма высокая точность измерений. Так, погрешность корреляционного измерителя скорости проката составляет 0,1 %.
Для дистанционного измерения скоростей самолетов, автомобилей и других быстродвижущихся объектов используют доплеровские измерители скорости. Как известно, эффект Доплера заключается в том, что если передатчик, или приемник, или отражатель радиоволн (акустических волн) сближается (удаляется) со скоростью V, то частота принятого сигнала отличается от частоты излученного сигнала на величину, пропорциональную этой скорости. Поэтому выходной величиной доплеровских преобразователей скорости является частота, равная разности частот излученного и принятого сигналов.
Рисунок 16.31 — Структурная схема прибора для измерения скорости движения ленты
Рисунок. 16.32 — Преобразователь ускорений сейсмического типа
Преобразователи ускорения. Для измерения ускорений могут быть применены датчики перемещения или скорости, выходной сигнал которых дифференцируется соответствующее число раз. Однако наибольшее распространение на практике получили преобразователи ускорений сейсмического типа. Отличительной особенностью указанных преобразователей является отсутствие механической связи между контролируемым объектом и неподвижным, относительно которого этот объект перемещается.
Принцип действия преобразователя сейсмического типа иллюстрируется на рисунке 16.32.
где с= 1/W — эластичность пружины;
W — жесткость пружины.
Полученное перемещение у преобразуется далее в электрический сигнал преобразователем перемещений того или иного типа.
Для улучшения динамических свойств преобразователя при работе с изменяющимися ускорениями в его конструкцию вводится демпфер 2, использующий вязкое трение для создания силы, пропорциональной скорости движения инерционной массы относительно корпуса и равной
где R — коэффициент вязкого трения.
В этом случае движение инерционной массы относительно корпуса описывается операторным способом.
При измерениях изменяющихся ускорений и, в частности, колебательных процессов представляет интерес амплитудно-частотная характеристика преобразователя (16.36)
, (16.36)
где — собственная частота колебаний;
— отношение частоты вынужденных колебаний к частоте собственных колебаний;
— коэффициент демпфирования.
Анализ (16.36) показывает, что динамические погрешности преобразователя малы при коэффициентах демпфирования v = 0,6-0,7 и при измерениях ускорений, меняющихся с частотой ω 3ω отношение y/x
Дата добавления: 2015-01-13 ; просмотров: 1793 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Единицы измерения ускорения.
Ускорение – это физическая величина (a, от лат. acceleratio), характеризующая быстроту изменения скорости тела. Ускорение является векторной величиной, показывающей, насколько изменяется вектор скорости тела при его движении за единицу времени:
Рассмотрим движение автомобиля. Трогаясь с места, он увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус.
Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:
Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчета.
Равнопеременное движение точки – это движение с постоянным ускорением,
Под словом равнопеременное понимают:
1. Равноускоренное движение – если модуль скорости увеличивается, т.е. ускорение параллельно скорости — ,
2. Равнозамедленное движение – если модуль скорости уменьшается, т.е. ускорение антипараллельно скорости: .
Поскольку ускорение равнопеременного движения постоянно, оно равно изменению скорости за любой конечный интервал времени:
где — скорость в начальный момент времени, принятый за нуль;
— текущее значение скорости (в момент времени t). Формула для определения ускорения из состояния покоя (равноускоренное движение, начальная скорость равна нулю:
имеет вид:
Если же нулю равна не начальная, а конечная скорость ( торможение при равнозамедленном движении), то формула ускорения принимает вид:
При движении по криволинейной траектории изменяется не только модуль скорости, но и ее направление. В этом случае вектор ускорения представляют в виде двух составляющих: тангенциальной – по касательной к траектории движения, и нормальной – перпендикулярно траектории
В соответствии с этим проекцию ускорения на касательную к траектории называют касательным или тангенциальным ускорением, а проекцию
на нормаль – нормальным или центростремительным ускорением.
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Направление вектора тангенциального ускорения совпадает с направлением линейной скорости или противоположно ему. То есть, вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть, вектор нормального ускорения перпендикулярен линейной скорости движения. Нормальное ускорение характеризует изменение скорости по направлению. Вектор нормального ускорения направлен по радиусу кривизны траектории.
Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
.