Чем меньше тем дальше находится звезда

Чем меньше тем дальше находится звезда

Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда

Звезды можно назвать самыми главными телами во Вселенной: ведь в них заключено более 90% всего наблюдаемого нами вещества.

Каждая звезда — это массивный газовый шар, излучающий собственный свет, в отличие от планет, которые светят отраженным солнечным светом. По своей природе звезды родственны Солнцу, ближайшей к Земле звезде.

Все звезды очень далеки от нас, и расстояние до каждой из них, кроме Солнца, во много раз превышает расстояние от Земли до любой из планет Солнечной системы. Прямой способ определения расстояний до сравнительно близких звезд основан на измерении их наблюдаемого смещения на фоне более далеких звезд, вызванного движением Земли вокруг Солнца.

Если расстояние до звезд составляет сотни и более парсек, их параллактическое смещение становится незаметным. Тогда для определения расстояний до звезд используют другие, косвенные методы, требующие анализа звездных спектров.

Самая близкая к Солнечной системе звезда — Проксима Центавра — находится от нас на расстоянии примерно 1,3 пс. Большинство звезд, хорошо заметных невооруженным глазом, удалено на десятки и сотни световых лет.

Звезды различаются по массе, размерам, плотностям, светимостям и химическому составу.

Рассмотрим эти характеристики подробнее.

Для определения масс звезд изучают движения звезд, входящих в пары и группы. В этих парах и группах звезды притягивают друг друга, двигаясь вокруг общего центра масс (двойные звезды). Массы звезд в таком случае определяются на основании закона всемирного тяготения. Чаще всего масса звезды измеряется в единицах массы Солнца, которая составляет примерно 2•10 30 кг. Массы почти всех звезд находятся в пределах от 0,1 до 50 масс Солнца.

Размеры звезд определяют как прямыми методами, с помощью оптических интерферометров, так и путем теоретических расчетов. Оказалось, что размеры большинства наблюдаемых звезд составляют сотни тысяч и миллионы километров. Диаметр Солнца, например, равен 1392000 км. Но встречаются и очень маленькие звезды – белые карлики и совсем крошечные нейтронные звезды диаметром 10–20 км. Звезды с размерами во много раз больше, чем у Солнца, являются гигантами (Бетельгейзе, Арктур, Антарес). Но особенно велики очень редко встречающиеся звезды — красные сверхгиганты. Если бы некоторые из таких звезд оказались на месте Солнца, орбита Марса, а то и Юпитера очутились бы внутри них!

Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда

Сравнительные размеры звёзд

Еще больше, чем по размерам, различаются звезды по светимости. Так называют мощность оптического излучения, т. е. количество световой энергии, ежесекундно выделяемое звездой. Чаще всего светимость выражают в единицах светимости Солнца. Эта величина равна 3,8•10 26 Вт. Для большинства наблюдаемых звезд она находится в пределах от нескольких тысячных долей до миллиона светимостей Солнца.

Химический состав звезд определяют, изучая их спектр. Оказалось, что вещество звезд содержит те же элементы, которые встречаются и на Земле. Почти во всех звездах более 98% массы приходится на два самых легких элемента — водород и гелий, причем водорода примерно в 2,7 раза больше по массе, чем гелия. На долю всех остальных элементов приходится около 2% массы вещества.

Звезды непрозрачны. Поэтому мы можем непосредственно определять химический состав только их поверхностных слоев, от которых к нам приходит свет. Однако теоретические расчеты позволяют предсказать содержание различных элементов и в недрах звезд.

По физическим свойствам вещества все известные звезды можно разделить на три категории: нормальные звезды, белые карлики и нейтронные звезды.

К нормальным звездам относятся большинство наблюдаемых звезд, в том числе все те, которые можно увидеть невооруженным глазом или в небольшой телескоп. Они состоят из обычного по своим свойствам, так называемого идеального газа. Его давление прямо пропорционально температуре и обратно пропорционально объему, который газ занимает. Используя физические законы, которым подчиняется газ, астрономы рассчитывают плотность, давление и температуру в недрах звезд, что очень важно для понимания строения звезд и их развития.

В звездах с очень большой плотностью вещество уже не подчиняется законам идеального газа. Газ приобретает иные свойства и называется вырожденным. Из вырожденного газа состоят белые карлики, а также ядра некоторых звезд-гигантов.

Вещество нейтронных звезд обладает чудовищной плотностью, при которой не могут существовать даже атомные ядра. Оно состоит в основном из электрически нейтральных элементарных частиц — нейтронов. Нейтроны в обычном состоянии входят, наряду с протонами, в состав атомных ядер.

Вещество любой звезды находится под действием силы гравитации, стремящейся сжать звезду. Однако звезды не сжимаются (по крайней мере, быстро), потому что гравитации препятствует сила давления звездного вещества. В нормальных звездах это давление обусловлено упругими свойствами горячего идеального газа. В белых карликах сжатию препятствует давление вырожденного газа. Оно почти не зависит от того, горячий газ или холодный. В нейтронных звездах гравитацию сдерживают ядерные силы, действующие между отдельными нейтронами.

Температура и тепловое давление газа в звездах поддерживаются внутренними источниками энергии. Если они иссякнут (а рано или поздно в каждой звезде это происходит), силы тяготения сожмут звезду в маленький плотный шар. В нормальных звездах энергия постоянно вырабатывается в центральной области, где плотность и температура газа достигают максимальных значений. Там происходят термоядерные реакции между протонами (ядрами атомов водорода), в результате которых самый легкий газ — водород превращается в более тяжелый гелий. При этом выделяется та энергия, которая позволяет звездам долго сохранять свою высокую температуру, но запасы водорода в звездах постепенно убывают. В Солнце, например, каждую секунду количество водорода уменьшается примерно на 600 млн т, и почти на столько же больше становится гелия. За секунду выделяется энергия, равная примерно 3,8•10 26 Дж, которую уносят электромагнитные волны. Несколько процентов этой энергии получают всепроникающие элементарные частицы — нейтрино, возникающие при ядерных реакциях. Они легко пронизывают звезду насквозь и улетают со скоростью света в межзвездное пространство.

В некоторых звездах — красных гигантах температура в центральной области настолько высока, что там начинает происходить реакция между ядрами гелия, в результате которой возникает более тяжелый элемент — углерод. Эта реакция также сопровождается выделением энергии.

По современным научным представлениям большая часть элементов тяжелее гелия, существующих в природе, образовалась при термоядерных реакциях в недрах звезд или в реакциях, протекающих при взрывах сверхновых звезд.

Когда звезда очень молода и в ней еще не начались ядерные реакции, источником ее энергии может служить сжатие звездного вещества, т. е. его уплотнение под действием собственной гравитации. При этом потенциальная энергия вещества уменьшается и переходит в тепловую.

Как и все тела в природе, звезды не остаются неизменными. Они рождаются, эволюционируют и, наконец, «умирают».

Продолжительность жизни звезды зависит от ее массы. Звезды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного «топлива» и могут светить десятки миллиардов лет. Поэтому звезды небольших масс еще не успели состариться. Зато массивные звезды светят сравнительно недолго. Так, звезды с массой 15 масс Солнца растрачивают запасы своей энергии всего за 10 млн лет. Звезды, такие, как наше Солнце, могут жить примерно в тысячу раз дольше.

Почти всю свою жизнь звезда сохраняет температуру и размер практически постоянными. Но когда в центральной области весь водород оказывается превращенным в гелий, звезда начинает сравнительно быстро изменяться. Она увеличивается в размере, и, хотя температура ее поверхности при этом падает, излучаемая звездой энергия возрастает во много раз. Звезда становится красным гигантом. Температура в центральной области поднимается до 100 млн градусов, и в плотном гелиевом ядре такой звезды «загорается» реакция превращения гелия в углерод.

На определенном этапе развития красного гиганта может произойти «сброс» внешних слоев этой раздувшейся звезды, и тогда звезда будет находиться внутри газового кольца планетарной туманности. Сама звезда после этого сожмется и превратится в медленно остывающий белый карлик.

Такой путь развития ожидает и наше Солнце: через 6–7 млрд лет оно, пройдя стадию красного гиганта, станет белым карликом.

Звезды, у которых масса в 1,4 раза больше, чем у Солнца, не смогут в конце жизни остановить свое сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдет «нейтронизация» вещества: взаимодействие электронов с протонами приведет к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда. Наиболее массивные звезды могут превратиться в нейтронные, после того как они взорвутся как сверхновые. Расчеты показывают, что нейтронные звезды должны быть сильно намагничены. Быстро вращаясь вокруг оси, они могут рождать мощные потоки радиоволн. Открытые в 60-х гг. импульсные источники радиоизлучения — пульсары и являются, по-видимому, такими вращающимися нейтронными звездами, возникшими после взрывов сверхновых.

Если масса звезды (или ее «остатка» после потери вещества) превышает 3–5 масс Солнца, то, начав сжиматься в конце своей активной жизни, она не сможет остановить своего сжатия даже на стадии нейтронной звезды. Конечным результатом такого безудержного гравитационного сжатия должно явиться образование черной дыры.

Источник

Чем меньше, тем ярче: что такое звездная величина

На звездной карте, изображении созвездия или в каталоге всегда указывается звездная величина каждой звезды. Звездная величина (magnitude) — это просто некоторый уровень яркости (или блеска). Древнегреческий ученый Гиппарх разделил все видимые им звезды на шесть классов — самые яркие, менее яркие и т. д. по убыванию яркости. Самым ярким звездам он присвоил звездную величину, равную 1 (или первая звездная величина), следующим за ними по яркости — равную 2, и т. д. до самых тусклых звезд шестой звездной величины.

Обратите внимание, что, в противоположность большинству систем и единиц измерения, чем ярче звезды, тем меньше ее звездная величина. Но, поскольку нет в мире совершенства, не было его и у греков — даже у Гиппарха была ахиллесова пята: в его системе не осталось места самым ярким звездам.

Еще одно упущение: у древних греков не было класса звездной величины для звезд, которых они не видели. В то время это не считалось оплошностью, потому что об этих звездах никто ничего не знал. Но сегодня нам известно, что существуют миллионы звезд, не видимых невооруженным глазом; естественно, у всех у них тоже есть некие звездные величины. Им присвоены большие числа: 7–8 для звезд, которые можно легко увидеть в бинокль и 10–11 для звезд, которые легко различимы в небольшой, но хороший телескоп. Значения звездных величин достигают 21 для самых тусклых звезд, которые можно увидеть в Паломарской обсерватории, и даже 30–31 для самых тусклых объектов, изображения которых получены с помощью телескопа «Хаббл».

Световой год

Людям обычно кажется, что световой год — это единица измерения времени, поскольку в этом термине присутствует слово год, но на самом деле это единица измерения расстояния. Световым годом называется расстояние, которое проходит свет за год, перемещаясь в пространстве со скоростью 300 тысяч километров в секунду.

Когда люди наблюдают в космосе некоторый объект, они на самом деле видят, как он выглядел в момент излучения света. Рассмотрим следующие примеры.

Когда астрономы замечают вспышку на Солнце, они на самом деле видят ее не в реальном времени, а с некоторым запаздыванием: свету от вспышки нужно 8 минут, чтобы дойти до Земли. Таким образом, астрономы видят то, что происходило на Солнце 8 минут назад.

Ближайшая к нам после Солнца звезда, Проксима Центавра, находится на расстоянии примерно 4 световых лет от Земли. Поэтому, наблюдая Проксиму, мы видим не то, какая она сейчас, а какой она была 4 года назад.

Яркость и математика

Звезды первой звездной величины примерно в 100 раз ярче звезд шестой звездной величины. Звезды первой звездной величины примерно в 2,512 раза ярче звезд второй звездной величины, последние примерно в 2,512 раза ярче звезд третьей звездной величины и т. д. Шкала звездных величин логарифмическая, и разность на одну звездную величину соответствует изменению яркости в 2,512 раза, причем 2,512 — это корень пятой степени из 100 (поскольку 2,512 × 2,512 × 2,512 × 2,512 × 2,512 = (2,512) 5 = 100). Если вы усомнитесь в моих словах и проделаете эти вычисления, то получите примерно 100,023 — я просто отбросил десятичную часть.

Таким образом, вы можете вычислить степень «тусклости» звезды — по сравнению с другими звездами — с помощью ее звездной величины. Если степень яркости звезд отличается на пять звездных величин (как, например, у звезд первой и шестой звездной величины), это значит, что одна из них ярче другой в (2,512) 5 раз, т. е. примерно в 100 раз. Если же яркость отличается на шесть звездных величин, то одна звезда ярче другой в примерно в 250 раз. Если же сравнить, например, звезды первой и одиннадцатой звездной величины, то первая будет ярче второй в (2,512) 10 раз, т. е. примерно в 10 000 раз (100 в квадрате).

Самый тусклый объект, видимый с помощью телескопа «Хаббл», отличается примерно на 25 звездных величин от самых тусклых звезд, видимых невооруженным глазом (имеется в виду обычное зрение — некоторые специалисты, а также лгуны и хвастуны утверждают, что видят звезды 7-й звездной величины). Разность на 25 звездных величин — значит в 1005 раз. Таким образом, с помощью телескопа «Хаббл» можно увидеть объекты, в 10 миллиардов раз более тусклые, чем способен различить человеческий глаз. И мы вправе это ожидать от телескопа стоимостью миллиард долларов (хорошо, что он не стоит 10 миллиардов долларов).

Не расстраивайтесь: хороший телескоп можно купить меньше, чем за тысячу долларов, а самые лучшие фотографии, сделанные телескопом «Хаббл» стоимостью в миллиард долларов, можно бесплатно загрузить из Internet на сайте www.stsci.edu.

Ясной и темной осенней ночью поищите на небе туманность Андромеды (М31). Это самый удаленный объект, который можно легко увидеть невооруженным глазом. Свет, который воспринимают ваши глаза, покинул эту галактику примерно 2 миллиона лет назад. И если по какой-то таинственной причине эта галактика исчезнет, следующие 2 миллиона лет люди на Земле даже не узнают об этом.

Когда мы смотрим на космические объекты, мы видим не настоящее, а прошлое,

Нельзя узнать точно, как какой-либо космический объект выглядит прямо сейчас.

Вполне возможно и даже очень вероятно, что некоторые крупные звезды из далеких галактик, которые мы видим на небе, больше не существуют. Дело в том, что «продолжительность жизни» некоторых больших звезд — только 10–20 миллионов лет. И если они находятся в галактике, отстоящей от нас на 50 миллионов световых лет, скорее всего, то, что мы видим — уже только воспоминание об этих звездах. Они больше не озаряют свою галактику; они мертвы.

Если мы пошлем вспышку света по направлению к одной из самых отдаленных галактик, обнаруженных с помощью телескопа «Хаббл» или других больших телескопов, то свет будет идти до них около 10–14 миллиардов лет, потому что именно на таком расстоянии от нас находятся подобные галактики. Но, по некоторым прогнозам ученых, примерно через 5–6 миллиардов лет на Солнце закончатся запасы водорода и гелия, в результате чего оно «раздуется» до невероятных размеров и уничтожит всю жизнь на Земле. Поэтому посланный нами свет станет тщетной попыткой оповестить кого-то о существовании нашей цивилизации — удивительном всплеске жизни в холодных просторах Космоса.

Астрономическая единица

Расстояние от Земли до Солнца равняется примерно 149 600 000 километров, или одной астрономической единице (а.е.). И расстояния между объектами в Солнечной системе обычно даются в а.е. В сообщениях в средствах массовой информации, пресс-релизах и популярных книгах астрономы обычно объявляют, на каком расстоянии «от Земли» находятся изучаемые ими звезды и галактики. Но между собой и в научных журналах они говорят о расстояниях «от Солнца», центра Солнечной системы. Это практически не имеет значения, потому что расстояния до звезд измеряются с точностью ±1 а.е., но все-таки это нужно иметь в виду.

Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда

Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда

Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник

Чем меньше тем дальше находится звезда

Тема: Связь между физическими характеристиками звезд.

Цель: Закрепление знаний учащихся о разнообразии звезд по температуре, спектру и светимости. Формирование системы основных понятий: главная последовательность, диаграмма «спектр–светимость», «масса–светимость», взаимосвязи характеристик звезд. Дать представление о вращении звезд и их эволюции в зависимости от исходной массы.

Задачи:
1. Обучающая: закрепление, обобщение и систематизация знаний о звездах, о путях эволюции звезд в зависимости от их массы, об изменении физических характеристик звезд в зависимости от их возраста. Диаграмма Герцшпрунга-Рессела («спектр – светимость»), диаграмма «масса – светимость», ( возможность других зависимостей: «масса – возраст звезды», «масса – температура» и т.д.). Об основных путях эволюции звезд в зависимости от их массы.
2. Воспитывающая: формирование научного мировоззрения, системы взглядов на мир.
3. Развивающая: формирование способности наблюдать, анализировать информации, делать выводы о том, что треки звездной эволюции, весь жизненный путь звезд зависят от первоначальной массы звезды.

Оборудование: Таблицы: диаграмма “спектр-светимость”, Д/ф “Звезды”, “Природа звезд”. Диапозитивы, звездный атлас. CD- «Red Shift 5.1» (сравнение звезд), коллекция ЦОР.

Межпредметные связи: Обществознание (материальное единство мира, способ и формы существования материи, объективные законы диалектики (обществоведение, Х кл)), математика (функции и графики).

II. Новый материал
В 1911г Эйнар Герцшпрунг (1873-1967, Голландия) установил зависимость светимости звезд с их спектральными классами, сопоставляя данные наблюдений. В 1913г Генри Норрис Рессел (1877-1957, США) также независимо установил данную зависимость и представил ее графически. Зависимость «спектр-светимость» получила название диаграммы Герцшпрунга — Рассела. Диаграмма показывает зависимость между абсолютной звёздной величиной, светимостью, спектральным классом и температурой поверхности звезды.
Уточнена и дополнена другими учеными.

главная последовательность (около 90% звезд): Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда
— это последовательность звезд разной массы. Самые большие (голубые гиганты) расположены в верхней части, а самые маленькие звезды – карлики – в нижней части главной последовательности
— это нормальные звезды похожие на Солнце в которых водород сгорает в термоядерной реакции.
Красные гиганты и сверхгиганты располагаются над главной последовательностью справа, белые карлики – под ней слева, поэтому начало левой части главной последовательности представлена голубыми звёздами с массами

50 солнечных, конец правой — красными карликами с массами

0.08 солнечных.
Высказанная в свое время идея, что главная последовательность отражает процесс эволюции звезд, как известно, оказалась неверной.
Существование главной последовательности связано с тем, что стадия горения водорода составляет

Дома: §25, вопросы стр. 142

Урок оформлен членом кружка «Интернет технологии» Дисеновой Анной (9кл), 2003 год.

Источник

Тест «Законы движения планет Солнечной Системы

Данный тест может быть использован на этапе контроля знаний

Просмотр содержимого документа
«Тест «Законы движения планет Солнечной Системы»

Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда

Законы движения планет Солнечной системы

Автор: © 2018, OOO КОМПЭДУ, http://compedu.ru

При поддержке проекта http://videouroki.net

Наиболее удалённую к Солнцу точку называют

Составьте слово из букв:

Комета Галлея имеет эксцентриситет е=0,967 и период обращения 76 лет. Определите большую полуось её орбиты. Ответ дайте с точностью до десятых.

Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда

а, а.е. ___________________________

Почему движение планет происходит не в точности по законам Кеплера?

Выберите несколько из 4 вариантов ответа:

1) В Солнечной системе не одна планета, а много, и каждая из них испытывает со стороны других возмущения.

2) В Солнечной системе не одна планета, а много, и каждая из них движется петлеобразно.

3) Движение планет в Солнечной системе строго подчиняется законам Кеплера.

4) В Солнечной системе не одна планета, а много, и каждая из них практически имеет несколько спутников.

Выберите несколько из 5 вариантов ответа:

1) Все планеты обращаются вокруг Солнца в одном и том же направлении.

2) Орбиты всех планет лежат почти в плоскости эклиптики.

4) Орбиты планет не лежат в плоскости эклиптики.

Чему равна (с точностью до десятых млн км) одна астрономическая единица?

млн км ___________________________

Как меняется значение скорости движения планеты при ее перемещении от афелия к перигелию?

Укажите истинность или ложность вариантов ответа:

__ В афелии скорость планеты максимальная, затем она возрастает и в перигелии становится минимальной.

__ Скорость движения планеты не меняется

__ В афелии скорость планеты минимальная, затем она возрастает и в перигелии становится равной нулю.

__ В афелии скорость планеты минимальная, затем она возрастает и в перигелии становится максимальной.

Сопоставьте законы Кеплера с их формулировками.

Чем меньше тем дальше находится звезда. Смотреть фото Чем меньше тем дальше находится звезда. Смотреть картинку Чем меньше тем дальше находится звезда. Картинка про Чем меньше тем дальше находится звезда. Фото Чем меньше тем дальше находится звезда

Укажите соответствие для всех 3 вариантов ответа:

__ Радиус-вектор планеты за равные промежутки времени описывает равновеликие площади.

__ Квадраты сидерических периодов обращения двух планет относятся как кубы больших полуосей их орбит.

__ Все планеты обращаются по эллипсам, в одном из фокусов которых находится Солнце.

Как зависят периоды обращения спутников от массы планет?

Укажите истинность или ложность вариантов ответа:

__ Чем меньше масса, тем меньше периоды спутников.

__ Чем больше масса, тем меньше периоды спутников.

__ Чем больше масса, тем больше периоды спутников.

__ Чем меньше масса, тем больше периоды спутников.

Звёздный период обращения Юпитера вокруг Солнца составляет 12 лет. Каково среднее расстояние Юпитера до Солнца?

Выберите один из 4 вариантов ответа:

Как далеко от звезды находится небесное тело, если его орбитальный период составляет 1250 лет? Ответ округлите до целого числа.

а. е. ___________________________

1) (3 б.) Верные ответы: «АФЕЛИЙ».

2) (5 б.): Верный ответ: 17,9.;

3) (3 б.) Верные ответы: 1;

4) (5 б.) Верные ответы: 1; 2;

5) (4 б.): Верный ответ: 149,6.;

6) (4 б.) Верные ответы: Нет; Нет; Нет; Да;

7) (5 б.) Верные ответы: 2; 3; 3;

8) (4 б.) Верные ответы: Нет; Да; Нет; Нет;

Источник

Эволюция звезд

Жизненный цикл звезд зависит от их массы: звезды с низкой массой в конечном итоге превращаются в белых карликов, в то время как жизнь звезд с большой массой заканчивается взрывом сверхновых.

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия (см. Теория относительности). Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности — и наружу. Одновременно давление в центре звезды начинает расти (см. Уравнение состояния идеального газа). Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции (см. Диаграмма Герцшпрунга—Рассела). Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.

В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиарда лет. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за «какие-то» десятки миллионов лет. Самые мелкие звезды, с другой стороны, «безбедно» живут сотни миллиардов лет. Так что по этой шкале наше Солнце относится к «крепким середнякам».

Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх — и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий — своего рода «пепел» затухающей первичной реакции нуклеосинтеза — вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, — один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно бо_льшую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса — на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа (см. Предел Чандрасекара). Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза — углерода, затем кремния, магния — и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо — это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени — некоторые теоретики полагают, что на это уходят считанные секунды, — свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра — и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов — иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *