Чем может быть полностью описана логическая операция

Логические операции. ➞ Что такое конъюнкция, дизъюнкция, импликация

Тот, кто хочет подробно разбираться в цифровых технологиях должен понимать основы такой темы, как алгебра логики. В этой статье будут разобраны основные определения, а также показаны самые важные логические операции, такие как конъюнкция, дизъюнкция, импликация и т.д.

Основные положения

Для начала следует разобраться, для чего нужна алгебра логики – главным образом, этот раздел математики и информатики, нужен для работы с логическими выражениями и высказываниями.

Логическим высказыванием называется утверждение (или запись), которое мы можем однозначно классифицировать, как истинное или ложное (1 или 0 в информатике).

Примером таким высказываний будут являться:

Логические высказывания делятся на два типа — простые и сложные.

В алгебре логики, как простые, так и сложные высказываниями описываются булевыми выражениями.

Булево выражение – это символическое (знаковое) описание высказывания.

Операции

Ниже рассмотрим основные операции, которые применяются в булевой алгебре. Их хватит, чтобы упростить львиную долю всех выражений, которые Вам встретятся.

Конъюнкция

Конъюнкция (булево умножение) — функция, по своему смыслу приближенная к союзу «И». При выполнении конъюнкции результат истинен (равен 1) тогда и только тогда, когда истинны ВСЕ переменные. Если хотя бы одно из высказываний ложно, то ложно и всё выражение (равно 0).

Функция может работать как с двумя операндами (высказываниями), так и с тремя, четырьмя и т.д. В математике обозначается с помощью знаков ​\( \wedge \) и &. Обозначение в языках программирования AND, &&. Таблица истинности для двух операндов:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Дизъюнкция

Дизъюнкцией называется функция булева сложения. По смыслу дизъюнкция приближена к союзу «ИЛИ». В результате выполнения данной функции результирующие выражение является истинным, когда хотя бы одно из высказываний в этом выражении тоже истинно.

Булево сложение, также как и умножение, может работать с произвольным количеством операндов. В математике обозначается как V, а в программировании с помощью OR или I.

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Инверсия

Логическое отрицание – функция, работающая с одним высказыванием, и заменяющая истину на ложь, а ложь на истину. В математике обозначается с помощью черты над значением, а в программирование и информатике с помощью слова NOT.

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Импликация

Также называется булевым следованием. В русском языке данной функции соответствует оборот «Если …, то …». Например, если на улице гремит гром, то стоит пасмурная погода.

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Эквивалентность

Булева тождественность или равенство. На простом языке будет обозначено как «… эквивалентно (равно) …». Результат будет истинным тогда, когда все значения в выражении будут иметь одинаковую истинность.

Обозначается с помощью трех черточек или ⟺.

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Порядок выполнения операций

Логические операции выполняются в следующем порядке:

Если в формуле указаны скобки, то порядок выполнения действий в скобках точно такой же, как написано выше.

Пример

Дано два отрезка B = [2,10], C = [6,14]. Из предложенных вариантов ответа выберите такой отрезок A, что формула \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) истинна при любом значении z. Варианты ответа:

Решение: Подставим в уравнение \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) =1 значения B и C и составим таблицу истинности:

Получившаяся формула \( ((z \in A) \Longrightarrow (z \in [2,10])) \vee (z \in [6,14])=1 \). По условию ​​​\( z \in A \)=1.

Таблица истинности для всех отрезков:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Ответ: A = [3,11].

Видео

Заключение

Вот Вы и познакомились с основными логическими операциями и понятиями и знаете, что такое булево сложение и умножение. Если вас заинтересовала данная тема, то можете изучить булевы законы. Эти законы не проходятся в рамках школьной программы и служат для упрощения сложных выражений.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 18 Алгебра логики

Информатика. 10 класса. Босова Л.Л. Оглавление

§ 18. Алгебра логики

Из курса информатики основной школы вы знаете, что для компьютерных наук большое значение имеет математическая логика, а точнее, её часть, называемая алгеброй логики.

Алгебра логики — раздел математики, изучающий высказывания, рассматриваемые с точки зрения их логических значений (истинности или ложности), и логические операции над ними.

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция Джордж Буль (1815-1864) — английский математик, основоположник алгебры логики. Дж. Буль изучал логику мышления математическими методами и разработал алгебраические методы решения традиционных логических задач. В 1854 году он опубликовал работу, в которой изложил суть алгебры логики, основанной на трёх операциях: and, or, not. Долгое время алгебра логики была известна достаточно узкому классу специалистов. В 1938 году Клод Шеннон применил алгебру логики для описания процесса функционирования релейноконтактных и электронно-ламповых схем.

18.1. Логические высказывания и переменные

Высказывание — это предложение, в отношении которого можно сказать, истинно оно или ложно.

Например, высказывание «Джордж Буль — основоположник алгебры логики» истинно, а высказывание «2 + 2 = 5» ложно.

Что вы можете сказать об истинности или ложности предложения «Данное высказывание — ложь»?

Из имеющихся высказываний можно строить новые высказывания. Для этого используются логические связки — слова и словосочетания «не», «и», «или», «если …, то», «тогда и только тогда» и др.

Высказывания, образованные из других высказываний, называются составными (сложными). Высказывание, никакая часть которого не является высказыванием, называется элементарным (простым).

Например, из двух простых высказываний «Алгебра логики является основой строения логических схем компьютеров» и «Алгебра логики служит математической основой решения сложных логических задач» можно получить составное высказывание «Алгебра логики является основой строения логических схем компьютеров и служит математической основой решения сложных логических задач».

Обоснование истинности или ложности элементарных высказываний не является задачей алгебры логики. Эти вопросы решаются теми науками, к сфере которых относятся элементарные высказывания. Такое сужение интересов позволяет обозначать высказывания символическими именами (например, А, В, С). Так, если обозначить элементарное высказывание «Джордж Буль — основоположник алгебры логики» именем А, а элементарное высказывание «2 + 2 = 5» именем В, то составное высказывание «Джордж Буль — основоположник алгебры логики, и 2 + 2 = 5» можно записать как «А и В». Здесь А, В — логические переменные, «и» — логическая связка.

Логическая переменная — это переменная, которая обозначает любое высказывание и может принимать логические значения «истина» или «ложь».

Для логических значений «истина» и «ложь» могут использоваться следующие обозначения:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Истинность или ложность составных высказываний зависит от истинности или ложности образующих их высказываний и определённой трактовки связок (логических операций над высказываниями).

18.2. Логические операции

Логическая операция полностью может быть описана таблицей истинности, указывающей, какие значения принимает составное высказывание при всех возможных значениях образующих его элементарных высказываний.

Из курса информатики основной школы вам известны логические операции отрицание, конъюнкция и дизъюнкция. Их таблицы истинности представлены ниже.

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны, называется конъюнкцией или логическим умножением.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны, называется дизъюнкцией или логическим сложением.

Логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному, называется отрицанием или инверсией.

При построении отрицания простого высказывания:

• используется оборот «неверно, что» или к сказуемому добавляется частица «не»;
• в высказывании, содержащем слово «все», это слово заменяется на «некоторые» и наоборот.

Рассмотрим несколько новых логических операций.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся ложным тогда и только тогда, когда первое высказывание (посылка) истинно, а второе (следствие) — ложно, называется импликацией или логическим следованием.

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

В разговорной речи импликации соответствуют предложения, содержащие связку «если …, то». Эту связку мы используем тогда, когда хотим показать наличие причинно-следственной связи, иначе говоря, зависимость одного события от другого. Например, пусть некоторый человек сказал: «Если завтра будет хорошая погода, то я пойду гулять». Ясно, что человек окажется лжецом лишь в том случае, если погода действительно будет хорошей, а гулять он не пойдёт. Если же погода будет плохой, то, независимо от того, пойдёт он гулять или нет, во лжи его нельзя обвинить: обещание пойти гулять он давал лишь при условии, что погода будет хорошей.

Результат операции импликации, как и других логических операций, определяется истинностью или ложностью логических переменных, а не наличием причинно-следственных связей между высказываниями. Например, абсурдное с житейской точки зрения высказывание «Если 2 > 3, то существуют ведьмы» является истинным с точки зрения алгебры логики.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным тогда и только тогда, когда только одно из двух высказываний истинно, называется строгой (исключающей) дизъюнкцией.

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

В русском языке строгой (разделительной) дизъюнкции соответствует связка «либо». В отличие от обычной дизъюнкции (связка «или») в высказывании, содержащем строгую дизъюнкцию, мы утверждаем, что произойдёт только одно событие.

Например, высказывая утверждение «На сегодняшнем матче Петя сидит на трибуне А либо на трибуне Б», мы считаем, что Петя сидит либо только на трибуне А, либо только на трибуне Б, и что сидеть одновременно на двух трибунах Петя не может.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным, когда оба исходных высказывания истинны или оба исходных высказывания ложны, называется эквиваленцией или равнозначностью.

В логике эквиваленция обозначается символом и задаётся следующей таблицей истинности:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

В разговорной речи для выражения взаимной обусловленности используется связка «тогда и только тогда, когда», а в математике — «необходимо и достаточно».

Рассмотрим высказывание «Денис пойдёт в бассейн тогда и только тогда, когда он выучит уроки».

Это высказывание истинно (договорённость соблюдается), если истинны оба элементарных высказывания («Денис пойдёт в бассейн», «Денис выучит уроки»). Высказывание истинно (договорённость не нарушается) и в том случае, если оба элементарных высказывания ложны («Денис не пойдёт в бассейн», «Денис не выучит уроки»). Если же одно из двух высказываний ложно («Денис пойдёт в бассейн, хотя и не выучит уроки», «Денис выучит уроки, но не пойдёт в бассейн»), то договорённость нарушается, и составное высказывание становится ложным.

А сейчас посмотрите внимательно на таблицы истинности строгой дизъюнкции и эквиваленции: если на некотором наборе логических переменных результатом строгой дизъюнкции является истина, то на этом же наборе результатом эквиваленции всегда будет ложь, и наоборот.

Можно сделать выводы:

• операция эквиваленции есть отрицание операции строгой дизъюнкции

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

• операция строгой дизъюнкции есть отрицание операции эквиваленции

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

На сегодняшний день в алгебре логики не существует унифицированной символики для обозначения логических операций. В таблице 4.1 представлены логические операции и их наиболее распространённые обозначения, используемые как в алгебре логики, так и в некоторых языках программирования. Здесь же приведены речевые обороты, соответствующие логическим операциям.

Таблица 4.1

Логические операции и их обозначения

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Операция отрицания выполняется над одним операндом. Такие операции называются одноместными или унарными. Все остальные логические операции, представленные в таблице 4.1, выполняются над двумя операндами и называются двуместными или бинарными.

18.3. Логические выражения

Составное логическое высказывание можно представить в виде логического выражения (формулы), состоящего из логических констант (О, 1), логических переменных, знаков логических операций и скобок.

Для логического выражения справедливо:

1) всякая логическая переменная, а также логические константы (О, 1) есть логическое выражение;
2) если А — логическое выражение, то и Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция— логическое выражение;
3) если А и В — выражения, то, связанные любой бинарной операцией, они также представляют собой логическое выражение.

При преобразовании или вычислении значения логического выражения логические операции выполняются в соответствии с их приоритетом:

1) отрицание;
2) конъюнкция;
3) дизъюнкция, строгая дизъюнкция;
4) импликация, эквиваленция.

Операции одного приоритета выполняются в порядке их следования, слева направо. Как и в арифметике, скобки меняют порядок выполнения операций.

1) ОЗОН;
2) ИГРА;
3) МАФИЯ;
4) ТРЕНАЖ.

Вычислим значение логического выражения для каждого из данных слов:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Итак, заданному условию удовлетворяют первое и четвёртое слова.

Решение логического уравнения — это один или несколько наборов значений логических переменных, при которых логическое уравнение становится истинным выражением.

Пример 2. Решим логическое уравнение

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Дизъюнкция ложна в том и только в том случае, когда ложно каждое из образующих её высказываний. Иными словами, наше уравнение соответствует системе уравнений:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Таким образом, значение переменной D уже найдено. Импликация равна нулю в единственном случае — когда из истины следует ложь. Иначе говоря, в нашем случае: А = 1 и С = 0.

Подставим найденные значения переменных в уравнение

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Ответ: А = 1, В = 1, С = 0, D = 0.

Логические уравнения могут иметь не одно, а несколько и даже очень много решений. Зачастую требуется, не выписывая все решения уравнения, указать их количество.

Пример 3. Выясним, сколько различных решений имеет логическое уравнение

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Дизъюнкция истинна, если истинно хотя бы одно из образующих её высказываний. Решение данного логического уравнения равносильно совокупности, состоящей из двух уравнений:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Первое равенство будет выполняться только при А = 1, В = 1 и С = 0. Поскольку D в этом уравнении не задействовано, оно может принимать любое из двух значений (0 или 1). Таким образом, всего первое уравнение имеет два решения.

Самостоятельно выясните, сколько решений имеет второе уравнение (из совокупности двух уравнений).

Сколько решений имеет исходное уравнение?

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Получаем для t1 и t2 три набора значений: 00, 01, 11. Первая двоичная цифра в каждом из этих трёх наборов — результат выражения х1 & х2, вторая — х3 & х4. Рассмотрим первый набор: существует три набора х1 и х2 таких, что х1 & х2 = 0, другими словами, первый 0 мы можем получить тремя способами. Второй О в этом наборе мы также можем получить тремя способами.

Из курсов информатики и математики основной школы вам известно одно из основных правил комбинаторики — правило умножения. Согласно ему, если элемент А можно выбрать n способами, и при любом выборе А элемент В можно выбрать m способами, то пару (А, В) можно выбрать n • m способами.

Согласно правилу умножения, пару 00 можно получить 3 • 3 = 9 способами.

Что касается пары 01, то первый 0 мы можем получить тремя способами, а для получения 1 существует единственный вариант (х3 & х4 = 1 при х3 = 1 и х4 = 1). Следовательно, есть ещё три набора переменных х1, х2, х3, х4, являющихся решением исходного уравнения.

Самостоятельно доведите решение этой задачи до конца.

18.4. Предикаты и их множества истинности

Равенства, неравенства и другие предложения, содержащие переменные, высказываниями не являются, но они становятся высказываниями при замене переменной каким-нибудь конкретным значением. Например, предложение х 2 + у 2 = 1) — множество точек окружности единичного радиуса с центром в начале координат. Следует отметить, что многие задания, выполняемые вами на уроках математики, прямо связаны с предикатами. Например, стандартное задание «Решить квадратное уравнение x 2 — 3x + 2 = 0» фактически означает требование найти множество истинности предиката Р(х) = (x 2 — 3x + 2 = 0).

Из имеющихся предикатов с помощью логических операций можно строить новые предикаты.

Пример 5. Найдём все целые числа 2, превращающие предикат

P(z) = (z > 5) & (z — 2 5) являются целые числа 6, 7, 8 и т. д. Множеством истинности предиката В(z) = (z — 2 Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Множество истинности исходного предиката — пересечение (общие элементы) множеств истинности образующих его предикатов:

Его мощность |Р| = 11.

Зачастую задания такого рода формулируют несколько иначе.

Например, так: «Найдите все целые числа х, для которых истинно высказывание (50 (х + 1)2)».

Проанализируем отдельно каждый из элементарных предикатов (50 2 ) и (50 > (x + 1) 2 ), решив соответствующие неравенства:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

САМОЕ ГЛАВНОЕ

Высказывание — это предложение, в отношении которого можно сказать, истинно оно или ложно. Высказывания, образованные из других высказываний, называются составными (сложными). Высказывание, никакая часть которого не является высказыванием, называется элементарным (простым). Истинность или ложность составных высказываний зависит от истинности или ложности образующих их высказываний и определённой трактовки связок (логических операций над высказываниями).

Логическая операция полностью может быть описана таблицей истинности, указывающей, какие значения принимает составное высказывание при всех возможных значениях образующих его элементарных высказываний.

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

Составное логическое высказывание можно представить в виде логического выражения (формулы), состоящего из логических констант (0, 1), логических переменных, знаков логических операций и скобок.

Логические операции имеют следующий приоритет:

1) отрицание;
2) конъюнкция;
3) дизъюнкция, строгая дизъюнкция;
4) импликация, эквиваленция.

Операции одного приоритета выполняются в порядке их следования, слева направо. Скобки меняют порядок выполнения операций.

Предикат — это утверждение, содержащее одну или несколько переменных. Из имеющихся предикатов с помощью логических операций можно строить новые предикаты.

Вопросы и задания

1. Из данных предложений выберите те, которые являются высказываниями. Обоснуйте свой выбор.

1) Как пройти в библиотеку?
2) Коля спросил: «Который час?»
3) Картины Пикассо слишком абстрактны.
4) Компьютеры могут быть построены только на основе двоичной системы счисления.

2. Из каждых трёх выберите два высказывания, являющихся отрицаниями друг друга:

3. Рассмотрите следующие элементарные высказывания: А = «Река Днепр впадает в Чёрное море», В = «45 — простое число», С = «Вена — столица Австрии», D = «0 — натуральное число».

Определите, какие из них истинные, а какие ложные. Составьте сложные высказывания, применяя каждый раз только одну из пяти логических операций

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

к высказываниям А, В, С и D. Сколько новых высказываний можно получить с помощью отрицания (инверсии)? Конъюнкции? Дизъюнкции? Импликации? Эквиваленции? Сколько всего новых высказываний можно получить? Сколько среди них будет истинных?

4. Представьте каждую пословицу в виде сложного логического высказывания, построенного на основе простых высказываний. Ответ обоснуйте при помощи таблиц истинности.

1) На вкус и цвет товарищей нет.
2) Если долго мучиться, что-нибудь получится.
3) Не зная броду, не суйся в воду.
4) Тяжело в ученье, легко в бою.
5) То не беда, что во ржи лебеда, то беда, что ни ржи, ни лебеды.
6) Где тонко, там и рвётся.
7) Или грудь в крестах, или голова в кустах.
8) За двумя зайцами погонишься — ни одного не поймаешь.
9) И волки сыты, и овцы целы.

5. Подберите вместо А, В, С, D такие высказывания, чтобы полученные сложные высказывания имели смысл:

1) если (А или В и С), то D;
2) если (не А и не В), то (С или D);
3) (А или В) тогда и только тогда, когда (С и не D).

8. Найдите все целые числа Z, для которых истинно высказывание:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

9. Какие из высказываний А, В, С должны быть истинны и ка кие ложны, чтобы были ложны следующие высказывания?

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

10. Даны три числа в различных системах счисления:

Переведите А, В и С в двоичную систему счисления и вы полните поразрядно логические операции (A v В) & С. Отвеп дайте в десятичной системе счисления.

11. Логическое отрицание восьмиразрядного двоичного числа записанное в десятичной системе счисления, равно 217 Определите исходное число в десятичной системе счисления,

12. Определите логическое произведение и логическую сумм> всех двоичных чисел в диапазоне от 1610 до 2210, включая границы. Ответ запишите в восьмеричной системе счисления.

13. Сколько различных решений имеет логическое уравнение?

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

14. Сколько решений имеет логическое уравнение х1 & х2 v х3 & x4 = 1?

15. Изобразите в декартовой прямоугольной системе координат множества истинности для следующих предикатов:

Чем может быть полностью описана логическая операция. Смотреть фото Чем может быть полностью описана логическая операция. Смотреть картинку Чем может быть полностью описана логическая операция. Картинка про Чем может быть полностью описана логическая операция. Фото Чем может быть полностью описана логическая операция

16. Предикат ((8x — 6) 65) определён на множестве целых чисел. Найдите его множество истинности. Укажите наибольшее целое число х, при котором предикат превращается в ложное высказывание.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *