Что обозначает на в математике в задачах
Как легко понять знаки Σ и П с помощью программирования
Для тех, кто подзабыл матешу
Вот говорят, что если ты не закончил Физтех, ФПМ или Бауманку, тебе в программировании делать нечего. Почему так говорят? Потому что, дескать, ты не учил сложную математику, а в программировании без неё никуда.
Это всё чушь, конечно. Если вы плохо знаете математику, вы можете быть блестящим разработчиком. Вы вряд ли напишете драйверы для видеокарты, но вы запросто сделаете мобильное приложение или веб-сервис. А это — основные деньги в этой среде.
Но всё же, чтобы получить некоторое интеллектуальное превосходство, вот вам пара примеров из страшного мира математики. Пусть они покажут вам, что не все закорючки в математике — это ад и ужас. Вот две нестрашные закорючки.
Знак Σ — сумма
Когда математикам нужно сложить несколько чисел подряд, они иногда пишут так:
Σ (читается «сигма») — это знак алгебраической суммы, который означает, что нам нужно сложить все числа от нижнего до верхнего, а перед этим сделать с ними то, что написано после знака Σ.
На картинке выше написано следующее: «посчитать сумму всех чисел от 5 до 15, умноженных на два». То есть:
Давайте для закрепления ещё один пример. На картинке ниже будет сказано «Найди сумму квадратов чисел от 5 до 10». То есть «возьми все числа от 5 до 10, каждое из них возведи в квадрат, а результаты сложи».
Но мы с вами как программисты видим, что здесь есть повторяющиеся действия: мы много раз складываем числа, которые меняются по одному и тому же правилу. А раз мы знаем это правило и знаем, сколько раз надо его применить, то это легко превратить в цикл. Для наглядности мы показали, какие параметры в Σ за что отвечают в цикле:
Произведение П
С произведением в математике работает точно такое же правило, только мы не складываем все элементы, а перемножаем их друг на друга:
А если это перевести в цикл, то алгоритм получится почти такой же, что и в сложении:
Что дальше
Сумма и произведение — простые математические операции, пусть они и обозначаются страшными символами. Впереди нас ждут интегралы, дифференциалы, приращения и бесконечные ряды. С ними тоже всё не так сложно, как кажется на первый взгляд.
Порядок действий в математике
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные операции в математике
Порядок вычисления простых выражений
Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:
Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.
Что первое, умножение или деление? — По порядку слева направо.
Сначала умножение или сложение? — Умножаем, потом складываем.
Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.
Рассмотрим порядок арифметических действий в примерах.
Пример 1. Выполнить вычисление: 11- 2 + 5.
В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.
Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.
Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?
Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.
Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.
Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.
Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.
Например, в такой последовательности можно решить пример по действиям:
Действия первой и второй ступени
В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.
С этими терминами правило определения порядка выполнения действий звучит так:
Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).
Порядок вычислений в выражениях со скобками
Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:
Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.
Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.
Рассмотрим порядок выполнения действий на примерах со скобками.
Как правильно решить пример:
Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.
Подставляем полученные значения в исходное выражение:
Порядок действий: умножение, деление, и только потом — сложение. Получится:
10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.
На этом все действия выполнены.
Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.
Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).
Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:
Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:
5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.
Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.
Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.
Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями
Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.
Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.
И, как всегда, рассмотрим, как это работает на примере.
В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.
Подставляем полученное значение в исходное выражение:
Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:
Закрепить на практике тему «Порядок действий» можно на курсах по математике в Skysmart!
Задача как математическое понятие
Определим прежде всего, что в методике начального обучения подразумевается под задачей. Задача — это текст, содержащий численные компоненты. Структура этого текста такова, что в нем можно выделить условие и требование (которое не всегда выражено в форме вопросительного предложения). Решить задачу — значит выполнить арифметические действия, определенные условием, и удовлетворить требованию задачи.
Согласно этому определению для полноценной работы над задачей ребенок должен:
а)уметь хорошо читать и понимать смысл прочитанного;
б)уметь работать над текстом задачи, выявляя его структуру и взаимоотношения между данными и искомым;
в)уметь правильно выбирать и выполнять арифметические
действия.
Данный список представляет собой сокращенный вариант умений, поскольку каждое из них является « сложносоставленным ».
Суть современного развивающего методического подхода к обучению ребенка решению задач состоит в том, что методика желает сформировать у учащегося самостоятельную учебную деятельность, в том числе и в плане решения задач. Иными словами, речь идет не о том, чтобы научить ребенка узнавать и решать ограниченный круг типовых задач (сформировать навык решения типовых задач, как говорили в прежние годы), а научить ребенка решать любые задачи, и притом самостоятельно. Понятно, что невозможно научить этому всех детей одинаково хорошо и в одинаковые сроки, но попытаться сформировать у ребенка умение самостоятельно работать над задачей как учебной проблемой — вот одна из основных линий современной методики обучения математике в начальных классах.
В связи с тем, что первое из упомянутых выше умений — умение хорошо читать — формируется у многих детей не в полной мере даже к концу 1 класса, педагогам, обучающим решению задач таких детей, приходится работать с ними « на слух ».
Покажем возможные варианты организации подготовите.)! ной работы к обучению решению задач, которую можно реализовать на математических занятиях в ДОУ с детьми шест и седьмого года жизни.
При рассмотрении задачи как вербальной (текстовой) структуры принято выделять ее характерные признаки: услов вопрос, данные, искомое.
В текстах стандартной формы условие выражено повеет вательным предложением и предшествует вопросу, которые выражены вопросительным предложением.
К нетиповым относятся тексты, в которых или требован и. выражено повествовательным предложением, или вся задачи сформулирована одним предложением, или условие раздно на две части и т. п. Например:
Нетиповые тексты могут быть построены и на других принципах — это могут быть тексты с нехваткой или излишком данных Например:
Работа с такими текстами является наиболее полезной с точки зрения обучения решению задач, поскольку именно такие тексты учат ребенка внимательно читать и анализировать задачу, целенаправленно устанавливать связи между данными и искомым с целью осознанного выбора действия. Безусловно, при отсутствии умения читать такую работу ребенок > осуществить не может. Если же предлагать такую работу ребенку, плохо читающему, то на практике мы обычно наблюдаем в этом случае подмену работы над текстом задачи манипулированием числовыми данными. Это происходит потому,
что числовые данные, обозначенные цифрами, бросаются в глаза при небольшом тексте в первую очередь. Поскольку в тексте стандартной задачи в 1 классе обычно бывает два числовых данных, с которыми нужно выполнить арифметическое действие (сложение или вычитание), ребенок, плохо читающий, просто выполняет с выделенными числовыми данными знакомое арифметическое действие (наугад). Если же учитель не подтверждает правильность выбора действия, то достаточно выполнить другое из двух известных действий. В результате подобной практики формируется достаточно распространенный стереотип действий ребенка с задачей, когда он выполняет действия с числами, заданными текстом задачи, даже не задумываясь над смыслом этих действий и результатом.
Противоположный способ работы над задачей можно наблюдать в практике работы воспитателя ДОУ при раннем знакомстве с задачей, когда педагог, зная что дети не могут работать с текстом самостоятельно, старается облегчить им восприятие этого текста, моделируя все его числовые компоненты на наглядности. (Хотя именно числовые компоненты воспринимаются ребенком быстрее и легче всего.) При этом на столе или фланелеграфе выставляется все нужное количество предметов и перед глазами детей выполняются все обозначенные условием действия.
Задача. 6 мартышек сидели на ветке. Одна — свалилась. Сколько мартышек осталось на ветке?
Иллюстрируя этот текст, педагог его, выставляет на фланелеграф изображения шести мартышек, затем снимает одну мартышку и ставит ее несколько в стороне или снимает с фла-нелеграфа. Остальные пять остаются перед глазами детей.
При такой организации наглядности не только процесс решения задачи теряет смысл, но и способ получения результата совершенно противоположен тому, который предполагается при решении задачи. Ответ при решении задачи должен быть получен как результат выполнения арифметического действия (!).
При описанном выше способе работы с наглядностью ребенок не только не озабочен выбором действия, но и не должен его выполнять, поскольку ответ он может получить пересчетом. При ответе на вопрос, какое действие он выполнял, ребенок ориентируется на действие учителя (снял мартышку —
надо отнимать) или на слово (отдали, унесли, съели, остал и т. п. — надо вычитать, дали, купили, стало, вместе и т. ш надо складывать).
При работе со стандартными формулировками и просты текстами такой прием некоторое время выручает и ребенка и педагога. Однако первый же нестандартный текст покажет порочность такого метода работы при обучении решению задач
3. Подготовительная работа к обучению решению задач
Первым необходимым условием подготовки к решению задач является обучение ребенка моделированию различных ситуаций (объединение совокупностей, удаление части, увеличение на несколько штук, сравнение и т. п.) на различной предметной наглядности символического характера (используются простейшие заменители — фигурки, палочки и т. д.).
Вторым необходимым условием является обучение ребенка выбору соответствующих арифметических действий и составлению математических выражений в соответствии с ситуацией, заданной текстом.
На третьем этапе следует убедиться, что ребенок достаточно уверенно пользуется приемом присчитывания и отсчитывания, поскольку для получения результата арифметического действия следует это действие выполнять, а не получать ответ пересчетом. Пересчет — это способ проверки правильности полученного результата.
Для исключения пересчета рекомендуется использовать прием работы со «скрытой» наглядностью, т. е. сначала наглядность предъявляется, сосчитывается, обозначается цифрами, а затем прячется (в коробку, конверт, корзину, за ширму и т. п.). После этого в соответствии с сюжетом задания приступают к выбору действия, поясняя его. Например, упомянутая выше ситуация с мартышками могла бы выглядеть так:
—На ветке сидели 6 мартышек.
Педагог выставляет мартышек и предлагает обозначить их количество цифрой. Затем изображение задергивается занавеской и сообщается продолжение сюжета:
Эту одну мартышку можно достать из-за занавески и поставить на незакрытую часть фланелеграфа.
—Обозначьте эту мартышку цифрой.
Теперь рядом с занавеской две карточки с цифрами: б и 1.
Запись завершается постановкой карточки со знаком вычитания. Теперь на фланелеграфе выражение: 6-1.
—Как найти его значение? (Дети используют любой знакомый способ, объясняя его.) Закончите запись. Какой знак нужно поставить, чтобы обозначить, что получилось 5 мартышек? (Знак равенства.)
Фиксируем равенство: 6-1 = 5.
После этого занавеска отдергивается и детям предлагается проверить правильность ответа пересчетом.
Данная система работы с наглядностью будет формировать у ребенка правильное представление о том, что в решении задачи главное — это поиск действия, и о том, что решение задачи и ее проверка — это разные учебные действия.
Для подготовки ребенка к обучению решению задач полезно учить его «на слух» улавливать различные «необычности» в текстах задач, для чего используются тексты, похожие на задачи, тексты с различными несоответствиями и т. п.
3. На тарелку положили 4 помидора и 5 огурцов. Сколько огурцов положили на тарелку? (Вопрос о том, что уже известно.)
Данные тексты акцентируют внимание ребенка на основных признаках задачи, учат его внимательно вслушиваться в текст, анализируя его и вычленяя основные параметры: условие, во» прос, данные, искомое, их достаточность и выполнимость.
Математика
Содержание
Основные сведения
Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом первоначально, исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики.
Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики (см. ниже).
Этимология
В текстах на русском языке слово «математика» или «мафематика» встречается по крайней мере с XVII века, например, у Николая Спафария в «Книге избранной вкратце о девяти мусах и о седмих свободных художествах» (1672 год) [5]
Определения
Одно из первых определений предмета математики дал Декарт [6] :
К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.
Математика… наука о количественных отношениях и пространственных формах действительного мира.
Это определение Энгельса [8] ; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле.
Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств,— именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.
Приведём ещё несколько современных определений.
Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики:
Вопрос об основаниях математики и о том, что представляет собой в конечном счёте математика, остаётся открытым. Мы не знаем какого-то направления, которое позволит в конце концов найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками.
Разделы математики
1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:
и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.
Программа обучения по специальности математика [13] образована следующими учебными дисциплинами:
2. Математика как специальность научных работников Министерством образования и науки Российской Федерации [14] подразделяется на специальности:
3. Для систематизации научных работ используется раздел «Математика» [15] универсальной десятичной классификации (УДК).
4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2010. Предыдущая версия — MSC 2000.
Обозначения
Вследствие того, что математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также математического анализа (понятия функции, производной и т. д.). Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.
Краткая история
Академиком А. Н. Колмогоровым предложена такая структура истории математики:
Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.
Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.
Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.
Философия математики
Цели и методы
Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.
Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.
Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство» до пространства n-измерений. «Пространство , при
3″ border=»0″ /> является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях». [16]
Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.
Основания
Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.
Помимо скептического, известны нижеперечисленные подходы к данному вопросу.
Теоретико-множественный подход
Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.
Логицизм
Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.
Формализм
Данный подход предполагает изучение формальных систем на основе классической логики.
Интуиционизм
Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).
Конструктивная математика
Основные темы
Числа
Понятие «число» первоначально относилось к натуральным числам. В дальнейшем оно было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.
| |||||||||||||||
Комплексные числа | Кватернионы |
Счётные множества | Натуральные числа ( |
---|---|
Вещественные числа и их расширения | Вещественные ( |
Другие числовые системы | Кардинальные числа • Порядковые числа (трансфинитные, ординал) • p-адические • Супернатуральные числа |
См. также | Двойные числа • Иррациональные числа • Трансцендентные • Числовой луч • Бикватернион |
Преобразования
Арифметика | Дифференциальное и интегральное исчисление | Векторный анализ | Анализ |
Дифференциальные уравнения | Динамические системы | Теория хаоса |
Структуры
Пространственные отношения
Более наглядные подходы в математике.
Дискретная математика
Дискретная математика включает средства, которые применяются над объектами, способными принимать только отдельные, не непрерывные значения.
Математическая логика | Теория вычислимости | Криптография | Теория графов |
Коды в системах классификации знаний
Онлайновые сервисы
Существует большое число сайтов, предоставляющих сервис для математических расчётов. Большинство из них англоязычные. [20] Из русскоязычных можно отметить сервис математических запросов поисковой системы Nigma.