Что обозначает в порядке возрастания
в порядке возрастания
Смотреть что такое «в порядке возрастания» в других словарях:
в порядке возрастания — Сортировка элементов какого либо массива данных в порядке возрастания. Например, по алфавиту от «А» до «Я» или по числам от «0» до «9». [http://www.morepc.ru/dict/] Тематики информационные технологии в… … Справочник технического переводчика
Элюотропный ряд растворителей для жидкостной хроматографии, расположенных в порядке возрастания полярности — Растворитель Индекс полярности Р Элюирующая сила ε0 (SiO2) Граница прозрачности в УФ области, нам Фторированные алканы Химический справочник
в алфавитном порядке — Расстановка элементов списка (наименований произведений, списка файлов и др.) в порядке возрастания букв алфавита. [http://www.morepc.ru/dict/] Тематики информационные технологии в целом EN alphabetical order … Справочник технического переводчика
в порядке — в поря/дке, предлог с род. Расположить числа в порядке возрастания … Слитно. Раздельно. Через дефис.
спектр — 01.02.14 спектр (сигнал или шум) [spectrum ]: Совокупность синусоидальных колебаний, представляющая в полосе частот изменяющийся во времени сигнал или шум, причем каждое колебание характеризуется собственной частотой,… … Словарь-справочник терминов нормативно-технической документации
Импорт — (Import) Понятие импорта, импорт товаров, лицензирование импорта Информация о понятии импорта, импорт товаров, лицензирование импорта Содержание Содержание Косвенный импорт Параллельный импорт Лицензирование импорта товаров Основы… … Энциклопедия инвестора
ГОСТ 24346-80: Вибрация. Термины и определения — Терминология ГОСТ 24346 80: Вибрация. Термины и определения оригинал документа: 112. Автоколебания Колебания системы, возникающие в результате самовозбуждения Определения термина из разных документов: Автоколебания 137. Активная виброзащита… … Словарь-справочник терминов нормативно-технической документации
Периодический закон — Памятник на территории Словацкого технологического университета (Братислава), посвященный Д. И. Менделееву Периодический закон фундаментальный закон природы, открытый Д. И. Ме … Википедия
Двоичное дерево поиска — Тип Дерево Временная сложность в О символике В среднем В худшем случае Расход памяти O(n) O(n) Поиск O(h) O(n) Вставка O(h) O(n) Удаление O(h) O(n) где h высота дерева … Википедия
в порядке возрастания
в порядке возрастания
Сортировка элементов какого-либо массива данных в порядке возрастания. Например, по алфавиту от «А» до «Я» или по числам от «0» до «9».
[http://www.morepc.ru/dict/]
Тематики
Смотреть что такое «в порядке возрастания» в других словарях:
Элюотропный ряд растворителей для жидкостной хроматографии, расположенных в порядке возрастания полярности — Растворитель Индекс полярности Р Элюирующая сила ε0 (SiO2) Граница прозрачности в УФ области, нам Фторированные алканы Химический справочник
в алфавитном порядке — Расстановка элементов списка (наименований произведений, списка файлов и др.) в порядке возрастания букв алфавита. [http://www.morepc.ru/dict/] Тематики информационные технологии в целом EN alphabetical order … Справочник технического переводчика
в порядке — в поря/дке, предлог с род. Расположить числа в порядке возрастания … Слитно. Раздельно. Через дефис.
спектр — 01.02.14 спектр (сигнал или шум) [spectrum ]: Совокупность синусоидальных колебаний, представляющая в полосе частот изменяющийся во времени сигнал или шум, причем каждое колебание характеризуется собственной частотой,… … Словарь-справочник терминов нормативно-технической документации
Импорт — (Import) Понятие импорта, импорт товаров, лицензирование импорта Информация о понятии импорта, импорт товаров, лицензирование импорта Содержание Содержание Косвенный импорт Параллельный импорт Лицензирование импорта товаров Основы… … Энциклопедия инвестора
ГОСТ 24346-80: Вибрация. Термины и определения — Терминология ГОСТ 24346 80: Вибрация. Термины и определения оригинал документа: 112. Автоколебания Колебания системы, возникающие в результате самовозбуждения Определения термина из разных документов: Автоколебания 137. Активная виброзащита… … Словарь-справочник терминов нормативно-технической документации
Периодический закон — Памятник на территории Словацкого технологического университета (Братислава), посвященный Д. И. Менделееву Периодический закон фундаментальный закон природы, открытый Д. И. Ме … Википедия
Двоичное дерево поиска — Тип Дерево Временная сложность в О символике В среднем В худшем случае Расход памяти O(n) O(n) Поиск O(h) O(n) Вставка O(h) O(n) Удаление O(h) O(n) где h высота дерева … Википедия
Разряды и классы чисел
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Числа и цифры
Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.
Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.
Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …
От количества цифр в числе зависит его название.
Число, которое состоит из одного знака, называется однозначным. Наименьшее однозначное — 1, наибольшее — 9.
Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.
Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.
Каждая цифра в записи многозначного числа занимает определенное место — позицию.
Классы чисел
Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.
Названия классов многозначных чисел справа налево:
Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:
А теперь прочитаем число единиц каждого класса слева направо:
Разряды чисел
От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:
Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.
Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще чтобы визуально разделить классы чисел.
Разрядные единицы обозначают так:
Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.
Чтобы легче понимать математику — записывайтесь на наши курсы по математике!
Потренируемся
Пример 1. Записать цифрами число, в котором содержится:
Все разрядные единицы, кроме простых единиц, называют составными единицами. Каждые десять единиц любого разряда составляют одну единицу следующего более высокого разряда:
Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отбросить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.
Пример 2. Сколько сотен содержится в числе 6284?
В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.
Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.
Значит, в данном числе содержится 62 сотни.
Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.
Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:
Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.
Натуральные числа
Определение натурального числа
Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.
Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.
Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.
Какие операции возможны над натуральными числами
Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!
Десятичная запись натурального числа
В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.
Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.
Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.
077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.
Количественный смысл натуральных чисел
Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.
Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».
Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.
Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:
🍌🍌🍌 | 3 предмета («три») |
🍌🍌🍌🍌 | 4 предмета («четыре») |
🍌🍌🍌🍌🍌 | 5 предметов («пять») |
🍌🍌🍌🍌🍌🍌 | 6 предметов («шесть») |
🍌🍌🍌🍌🍌🍌🍌 | 7 предметов («семь») |
🍌🍌🍌🍌🍌🍌🍌🍌 | 8 предметов («восемь») |
🍌🍌🍌🍌🍌🍌🍌🍌🍌 | 9 предметов («девять») |
Основная функция натурального числа — указать количество предметов.
Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.
Однозначные, двузначные и трехзначные натуральные числа
Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.
Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.
По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.
Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.
Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.
Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.
Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.
Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.
Многозначные натуральные числа
Многозначные натуральные числа состоят из двух и более знаков.
1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.
Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.
Сколько всего натуральных чисел?
Однозначных 9, двузначных 90, трехзначных 900 и т.д.
Свойства натуральных чисел
Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:
множество натуральных чисел | бесконечно и начинается с единицы (1) |
за каждым натуральным числом следует другое | оно больше предыдущего на 1 |
результат деления натурального числа на единицу (1) | само натуральное число: 5 : 1 = 5 |
результат деления натурального числа самого на себя | единица (1): 6 : 6 = 1 |
переместительный закон сложения | от перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4 |
сочетательный закон сложения | результат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4) |
переместительный закон умножения | от перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4 |
сочетательный закон умножения | результат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8) |
распределительный закон умножения относительно сложения | чтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6 |
распределительный закон умножения относительно вычитания | чтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5 |
распределительный закон деления относительно сложения | чтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3 |
распределительный закон деления относительно вычитания | чтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2 |
Разряды натурального числа и значение разряда
Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.
Разряд — это позиция, место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.
Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.
Десятичная система счисления
Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.
Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.
Вопрос для самопроверки
Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:
Расположи дроби 6 / 8, 3 / 9, 5 / 8, 5 / 9, 6 / 7, 3 / 10 в порядке возрастания, в порядке убывания?
Расположи дроби 6 / 8, 3 / 9, 5 / 8, 5 / 9, 6 / 7, 3 / 10 в порядке возрастания, в порядке убывания.
6 / 7 Если не понимаешь, дели дробь, и узнаешь что будет больше, и что меньше.
Расположите дроби в порядке возрастания номер 16?
Расположите дроби в порядке возрастания номер 16.
Расположите дроби в порядке возрастания?
Расположите дроби в порядке возрастания.
Расположите дроби в порядке возрастания?
Расположите дроби в порядке возрастания.
Расположите дроби в порядке возрастания?
Расположите дроби в порядке возрастания.
Как расположить дроби с разными знаменатилями в порядке возроствние и убываниеЖду?
Как расположить дроби с разными знаменатилями в порядке возроствние и убывание
Расположи в порядке возрастания?
Расположи в порядке возрастания.
Расположите дроби в порядке убывания?
Расположите дроби в порядке убывания.
Возрастание порядке убывания?
Возрастание порядке убывания.
В порядке убывания расположите?
В порядке убывания расположите.
Пусть х было щук, тогда 3х было окуней, а 3х + 17 поймали лещей и 2(3х + 17)сазанов. Х + 3х + 3х + 17 + 2(3х + 17) = 324 1)2(3 * 21 + 17) = 2(63 + 17) = 2 * 80 = 160 поймано сазанов.