Что обозначают числа при умножении

Умножение

В этом разделе познакомимся с умножением и узнаем, что сложение одинаковых слагаемых можно заменить умножением.

Например, 6 + 6 + 6 + 6 = 24 можно записать по-другому: 6 • 4 = 24

Смысл действия умножения состоит в том, что при умножении находится сумма одинаковых слагаемых.

Первое число при умножении показывает, какое слагаемое повторяют несколько раз.

Второе число при умножении показывает, сколько раз повторяют это слагаемое.

Результат умножения показывает, какое число получается.

6 • 4 значит, что число 6 повторяют 4 раза: 6 + 6 + 6 + 6 = 24

Числа при умножении

Результат умножения, или Произведение

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Чтение числовых выражений

Этот пример можно прочитать по-разному.

Умножение на 1

4 • 1 = 4, потому что это значит, что число 4 повторяют только 1 раз.

23 • 1 = 23, потому что это значит, что число 23 повторяют только 1 раз.

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Умножение на 0

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

8 • 0 = 0, потому что это значит, что число 8 повторяют 0 раз.

26 • 0 = 0, потому что это значит, что число 26 повторяют 0 раз.

Умножение на 10

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

8 • 10 = 80, потому что число 8 повторяют 10 раз.

15 • 10 = 150, потому что число 15 повторяют 10 раз.

Связь деления и умножения

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

8 • 3 = 24, потому что 8 повторяют 3 раза.

24 : 3 = 8, потому что в 24 по 3 содержится 8 раз.

24 : 8 = 3, потому что в 24 по 8 содержится 3 раза.

В несколько раз больше

Решим задачу:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

В магазине было 2 лисички, а котят в 4 раза больше. Сколько было котят?

Это значит, что котят было 4 раза по 2.

Заменяем сложение умножением и получаем:

Во сколько раз больше? Во сколько раз меньше?

Например, решим задачу: В магазине было 8 котят и 2 лисички. Во сколько раз котят было больше, чем лисичек? Во сколько раз лисичек было меньше, чем котят?

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Чтобы ответить на эти вопросы, нужно узнать, сколько раз по 2 содержится в 8?

Значит, котят в 4 раза больше, чем лисичек, а лисичек в 4 раза меньше, чем котят.

Поделись с друзьями в социальных сетях:

Источник

Математика

Умножить одно целое число на другое значит повторить одно число столько раз, сколько в другом содержится единиц. Повторить число значит взять его слагаемым несколько раз и определить сумму.

Определение умножения

Умножение целых чисел есть такое действие, в котором нужно взять одно число слагаемым столько раз, сколько в другом содержится единиц, и найти сумму этих слагаемых.

Умножить 7 на 3 значит взять число 7 слагаемым три раза и найти сумму. Искомая сумма есть 21.

Умножение есть сложение равных слагаемых.

Данные в умножении называются множимым и множителем, а искомое — произведением.

В предложенном примере данными будут множимое 7, множитель 3, а искомым произведением 21.

Множимое. Множимое есть то число, которое умножается или повторяется слагаемым. Множимое выражает величину равных слагаемых.

Множитель. Множитель показывает, сколько раз множимое повторяется слагаемым. Множитель показывает число равных слагаемых.

Произведение. Произведение есть число, которое получается от умножения. Оно есть сумма равных слагаемых.

Множимое и множитель вместе называются производителями.

При умножении целых чисел одно число увеличивается во столько раз, сколько в другом содержится единиц.

Повторить число 7 три раза слагаемым и найти сумму значит 7 умножить на 3. Вместо того, чтобы писать

пишут при помощи знака умножения короче:

Умножение есть сокращенное сложение равных слагаемых.

Связь между данными и искомым числом выражается в умножении

7 × 3 = 21 или 7 · 3 = 21

семь, умноженное на три, составляет 21.

Чтобы составить произведение 21, нужно 7 повторить три раза

Чтобы составить множитель 3, нужно единицу повторить три раза

Отсюда имеем другое определение умножения: Умножение есть такое действие, в котором произведение точно так же составляется из множимого, как множитель составлен из единицы.

Основное свойство произведения

Произведение не изменяется от перемены порядка производителей.

Доказательство. Умножить 7 на 3 значит 7 повторить три раза. Заменив 7 суммою 7 единиц и вложив их в вертикальном порядке, имеем:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Таким образом, при умножении двух чисел мы можем считать множителем любой из двух производителей. На этом основании производители называются сомножителями или просто множителями.

Самый общий прием умножения состоит в сложении равных слагаемых; но, если производители велики, этот прием приводит к длинным вычислениям, поэтому самое вычисление располагают иначе.

Умножение однозначных чисел. Таблица Пифагора

Чтобы умножить два однозначных числа, нужно повторить одно число слагаемым столько раз, сколько в другом содержится единиц, и найти их сумму. Так как умножение целых чисел приводится к умножению однозначных чисел, то составляют таблицу произведений всех однозначных чисел попарно. Такая таблица всех произведений однозначных чисел попарно называется таблицей умножения.

Таблица Пифагора. Изобретение ее приписывают греческому философу Пифагору, по имени которого ее называют таблицей Пифагора. (Пифагор родился около 569 года до н. э.).

Чтобы составить эту таблицу, нужно написать первые 9 чисел в горизонтальный ряд:

Затем под этой строкой надо подписать ряд чисел, выражающих произведение этих чисел на 2. Этот ряд чисел получится, когда в первой строке сложим каждое число само с собою. От второй строки чисел последовательно переходим к 3, 4 и т. д. Каждая последующая строка получается из предыдущей через прибавление к ней чисел первой строки.

Продолжая так поступать до 9 строки, мы получим таблицу Пифагора в следующем виде

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Чтобы по этой таблице найти произведение двух однозначных чисел, нужно отыскать одного производителя в первой горизонтальной строке, а другого в первом вертикальном столбце; тогда искомое произведение будет на пересечении соответствующих столбца и строки. Таким образом, произведение 6 × 7 = 42 находится на пересечении 6-й строки и 7-го столбца. Произведение нуля на число и числа на нуль всегда дает нуль.

Так как произведение числа на 1 дает само число и перемена порядка множителей не изменяет произведения, то все различные произведения двух однозначных чисел, на которые следует обратить внимание, заключаются в следующей таблице:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Произведения однозначных чисел, не содержащиеся в этой таблице, получаются по данным, если только изменить в них порядок множителе; таким образом, 9 × 4 = 4 × 9 = 36.

Умножение многозначного числа на однозначное

Умножение числа 8094 на 3 обозначают тем, что подписывают множитель под множимым, ставят слева знак умножения и проводят черту с тем, чтобы отделить произведение.

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Умножить многозначное число 8094 на 3 значит найти сумму трех равных слагаемых

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

следовательно, для умножения нужно все порядки многозначного числа повторить три раза, то есть умножить на 3 единицы, десятки, сотни, и т. п. Сложение начинают с единицы, следовательно, и умножение нужно начинать с единицы, а затем переходят от правой руки к левой к единицам высшего порядка.

При этом ход вычислений выражают словесно:

Начинаем умножение с единиц: 3 × 4 составляют 12, подписываем под единицами 2, а единицу (1 десяток) прикладываем к произведению следующего порядка на множитель (или запоминаем ее в уме).

Умножаем десятки: 3 × 9 составляет 27, да 1 в уме составят 28; подписываем под десятками 8 и 2 в уме.

Умножаем сотни: Нуль, умноженный на 3, дает нуль, да 2 в уме составит 2, подписываем под сотнями 2.

Умножаем тысячи: 3 × 8 = 24, подписываем вполне 24, ибо не имеем следующих порядков.

Это действие выразится письменно:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Из предыдущего примера выводим следующее правило. Чтобы умножить многозначное число на однозначное, нужно:

Подписать множитель под единицами множимого, поставить слева знак умножения и провести черту.

Умножение начинать с простых единиц, затем, переходя от правой руки к левой, последовательно умножают десятки, сотни, тысячи и т. д.

Если при умножении произведение выражается однозначным числом, то его подписывают под умножаемой цифрой множимого.

Если же произведение выражается двухзначным числом, то цифру единиц подписывают под тем же столбцом, а цифру десятков прибавляют к произведению следующего порядка на множитель.

Умножение продолжается до тех пор, пока не получат полного произведения.

Умножение чисел на 10, 100, 1000 …

Умножить числа на 10 значит простые единицы превратить в десятки, десятки в сотни и т. д., то есть повысить порядок всех цифр на единицу. Этого достигают, прибавляя справа один нуль. Умножить на 100 значит повысить все порядки множимого двумя единицами, то есть превратить единицы в сотни, десятки в тысячи и т. д.

Этого достигают, приписывая к числу два нуля.

Для умножения целого числа на 10, 100, 1000 и вообще на 1 с нулями нужно приписать справа столько нулей, сколько их находится во множителе.

Умножение числа 6035 на 1000 выразится письменно:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Когда множитель есть число, оканчивающееся нулями, подписывают под множимым только значащие цифры, а нули множителя приписывают справа.

Умножение на число с нулями в конце

Чтобы умножить 2039 на 300 нужно взять число 2029 слагаемым 300 раз. Взять 300 слагаемых все-равно, что взять три раза по 100 слагаемых или 100 раз по три слагаемых. Для этого умножаем число на 3, а потом на 100, или умножаем сначала на 3, а потом приписываем справа два нуля.

Ход вычисления выразится письменно:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Правило. Чтобы умножить одно число на другое, изображаемое цифрой с нулями, нужно сначала помножить множимое на число, выражаемое значащей цифрой, и затем приписать столько нулей, сколько их находится в множителе.

Умножение многозначного числа на многозначное

Чтобы умножить многозначное число 3029 на многозначное 429, или найти произведение 3029 * 429, нужно повторить 3029 слагаемым 429 раз и найти сумму. Повторить 3029 слагаемым 429 раз значит повторить его слагаемым сначала 9, потом 20 и, наконец, 400 раз. Следовательно, чтобы умножить 3029 на 429, нужно 3029 умножить сначала на 9, потом на 20 и, наконец, на 400 и найти сумму этих трех произведений.

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

называются частными произведениями.

Полное произведение 3029 × 429 равно сумме трех частных:

3029 × 429 = 3029 × 9 + 3029 × 20 + 3029 × 400.

Найдем величины этих трех частных произведений.

Умножая 3029 на 9, находим:

Умножая 3029 на 20, находим:

Умножая 3026 на 400, находим:

Сложив эти частные произведения, получим произведение 3029 × 429:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Не трудно заметить, что все эти частные произведения есть произведения числа 3029 на однозначные числа 9, 2, 4, причем ко второму произведению, происходящему от умножения на десятки, приписывается один нуль, к третьему два нуля.

Нули, приписываемые к частным произведениям, опускают при умножении и ход вычисления выражают письменно:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

В таком случае, при умножении на 2 (цифру десятков множителя) подписывают 8 под десятками, или отступают влево на одну цифру; при умножении на цифру сотен 4, подписывают 6 в третьем столбце, или отступают влево на 2 цифры. Вообще каждое частное произведение начинают подписывать от правой руки к левой под тем порядком, к которому принадлежит цифра множителя.

Отыскивая произведение 3247 на 209, имеем:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Здесь второе частное произведение начинаем подписывать под третьим столбцом, ибо оно выражает произведение 3247 на 2, третью цифру множителя.

Мы здесь опустили только два нуля, которые должны были явиться во втором частном произведении, как как оно выражает произведение числа на 2 сотни или на 200.

Из всего сказанного выводим правило. Чтобы умножить многозначное число на многозначное,

нужно множителя подписать под множимым так, чтобы цифры одинаковых порядков находились в одном вертикальном столбце, поставить слева знак умножения и провести черту.

Умножение начинают с простых единиц, затем переходят от правой руки к левой, умножают последовательное множимое на цифру десятков, сотен и т. д. и составляют столько частных произведений, сколько значащих цифр во множителе.

Единицы каждого частного произведения подписывают под тем столбцом, к которому принадлежит цифра множителя.

Все частные произведения, найденные таким образом, складывают вместе и получают в сумме произведение.

Чтобы умножить многозначное число на множитель, оканчивающейся нулями, нужно отбросить нули во множителе, умножить на оставшееся число и потом приписать к произведению столько нулей, сколько их находится во множителе.

Пример. Найти произведение 342 на 2700.

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Если множимое и множитель оба оканчиваются нулями, при умножении отбрасывают их и затем к произведению приписывают столько нулей, сколько их содержится в обоих производителях.

Пример. Вычисляя произведение 2700 на 35000, умножаем 27 на 35

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Приписывая к 945 пять нулей, получаем искомое произведение:

2700 × 35000 = 94500000.

Число цифр произведения. Число цифр произведения 3728 × 496 можно определить следующим образом. Это произведение более 3728 × 100 и меньше 3728 × 1000. Число цифр первого произведения 6 равно числу цифр в множимом 3728 и во множителе 496 без единицы. Число цифр второго произведения 7 равно числу цифр во множимом и во множителе. Данное произведение 3728 × 496 не может иметь цифр менее 6 (числа цифр произведения 3728 × 100, и более 7 (числа цифр произведения 3728 × 1000).

Откуда заключаем: число цифр всякого произведения или равно числу цифр во множимом и во множителе, или равно этому числу без единицы.

В нашем произведении может содержаться или 7 или 6 цифр.

Степени

Между различными произведениями заслуживают особого внимания такие, в которых производители равны. Так, например:

Квадраты. Произведение двух равных множителей называется квадратом числа.

В наших примерах 4 есть квадрат 2, 9 есть квадрат 3.

Кубы. Произведение трех равных множителей называется кубом числа.

Так, в примерах 2 × 2 × 2 = 8, 3 × 3 × 3 = 27, число 8 есть куб 2, 27 есть куб 3.

Вообще произведение нескольких равных множителей называется степенью числа. Степени получают свои названия от числа равных множителей.

Произведения двух равных множителей или квадраты называются вторыми степенями.

Произведения трех равных множителей или кубы называются третьими степенями, и т. д.

Источник

Правила умножения натуральных чисел

Что такое умножение

Умножение — такое арифметическое действие, когда сложение одинаковых чисел происходит искомое количество раз.

Умножение имеет широкую матрицу для применения.

Множимое — число, которое будет использоваться в математическом действии.

Множитель — число раз, сколько нужно данное число (множимое) повторить, для выполнения операции.

Произведение — итог действия, результат математической операции.

Знак умножения в алгебре обозначается (∙) точкой в середине строки. Допустимо в печати использование крест (х), в компьютерной печати нередко используется звездочка (*).

Описание основных правил, порядок действий

Чтобы произвести умножение в алгебре, нужно помнить и понимать смысл самой математической операции.

25 х 4 = 25 + 25 + 25 + 25 = 100

Множимое число 25 умножаем на множитель 4 — понимаем это как сумма четырех чисел 25, или как сумма, где 25 сложили 4 раза. 100 — произведение арифметической операции.

При умножении на число с нулями (десять, сто, тысяча, десять тысяч, миллион) достаточно в произведении к множителю дописать нули.

Познакомимся с алгоритмом умножения в столбик. Это поможет в решении многих примеров, в том числе с дробями. Ученик действует по принципу пишу, затем умножаю единицы, затем десятки, наконец сотни.

Решите пример 25 ∙ 16 с помощью столбика.

Чтобы произвести умножение столбиком, действуем последовательно.

Законы с примерами, как проверить результат

В умножении, как и в делении, сложении и вычитании, есть свои нормы и порядки.

Переместительный закон умножения

От перестановки слагаемых сумма чисел не меняется. Этот же закон действует и для умножения. Если множитель и множимое поменять местами, полученное произведение чисел не изменится.

Переместительный закон гласит, что от перемены мест множителей произведение не меняется.

a ∙ b = b ∙ a

Разберем переместительный закон на примере задачи.

У садовника в трех корзинах было по 14 груш. Сколько всего было груш в корзинах?

Решение: 14 ∙ 3 = 42 (груши) или 3 ∙ 14 = 42 (груши).

Ответ: 42 груши у садовника было в корзинах.

В многоэтажном доме 75 квартир. В каждой квартире проживает 5 жильцов. Сколько всего жильцов в этом многоэтажном доме?

Решение: 75 ∙ 5 = 375 (жильцов) или 5 ∙ 75 = 375 (жильцов).

Ответ: 375 жильцов всего проживает в многоэтажном доме.

Сочетательный закон умножения

Сочетательный закон умножения объясняет, чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего.

a · b · c = (a · b) · c = a · (b · c)

То есть фактически при решении уравнения есть возможность менять множители местами. Воспользоваться этой формулой необходимо, например, когда операцию внутри скобок провести легче, чем предложенное прямое уравнение.

71 · 25 · 4 = 71 · (25 · 4) = 710

В данном случае найти произведение 25 · 4 не составит труда у школьников, тогда как умножение 71 на 25 довольно длительная и проблематичная операция.

Распределительный закон умножения

Распределительный закон умножения действует относительно двух других важных операций: сложение и вычитание.

а ∙ (b + c) = a ∙ b + a ∙ с

Если нужно умножить число на сумму чисел, допускается умножить число отдельно на каждое из этих чисел и затем произвести сложение.

5 ∙ (12 + 16) = 5 ∙ 28 = 140

5 ∙ 12 + 5 ∙ 16 = 60 + 80 = 140

Как мы можем убедиться из этого примера, при одинаковом произведении произвести операцию в данном случае через сумму отдельных произведений a ∙ b + a ∙ с проще.

а ∙ (b – c) = a ∙ b – a ∙ с

Для умножения числа на множитель, который представляет собой операцию вычитания, нужно умножить число отдельно на каждое из чисел в скобках, а затем произвести вычитание.

В данной арифметической операции к итогу 144 также можно прийти двумя способами. Решение примера по математике зависит от предложенных в задании компонентов и логической мысли ученика.

Источник

Умножение натуральных чисел

Я сперва покажу на примере, для чего нужно умножение, а после дам определение умножения и подробно расскажу об этом действии.

Допустим, мы хотим купить 14 тетрадей по 22 рубля каждая. Планируя покупку, нам нужно знать, сколько мы заплатим за всю покупку?

Чтобы ответить на этот вопрос, нам нужно сложить стоимость каждой тетради, которую мы хотим купить. А, так мы запланировали покупку 14 тетрадей, тогда мы складываем 22 рубля 14 раз, то есть, находим сумму 14 слагаемых, каждое из которых равно 22 :

22+22+22+22+22+22+22+22+22+22+22+22+22+22=308 (то есть, 308 рублей).

Если размер и количество одинаковых слагаемых небольшие, мы без особого труда можем найти их сумму. Но что же делать, если слагаемые многозначные и их количество велико?

Умножение – это арифметическое действие сложения определенного количества одинаковых слагаемых.

Действие умножение – это частный случай действия сложение.

Число, которое является повторяющимся слагаемым, называется множимое (то, что множится, умножается).
Число, которое указывает на количество одинаковых слагаемых, называется множитель.
Множимое и множитель имеют общее название – сомножители.
Результат действия умножения называется произведением.

22 ∙14=308,

22x14=308,

22*14=308.

При записи от руки действие умножение принято обозначать при помощи точки, косой крест используется в основном при печати, а звездочка – в компьютерном наборе. Но даже и во время компьютерного набора грамотнее использовать точку или косой крест (букву х).

Прочитать действие умножения и результат можно такими способами:

Компоненты действия умножение для двух сомножителей:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Компоненты умножения для трех сомножителей и более:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Основные свойства умножения

Поскольку действие умножение является частным случаем действия сложение, то основные свойства сложения распространяются и на умножение.

Законы умножения и их следствия

Умножение обладает такими основными свойствами, называемые законами умножения, из которых вытекают остальные свойства и следствия:

Переместительный закон умножения.
Произведение двух или нескольких сомножителей от изменения их порядка не меняется.
Это значит, что значение произведения не зависит от порядка перемножения сомножителей, то есть, от порядка выполнения действия умножение.

Для двух сомножителей мы можем записать переместительный закон умножения в общем виде так:

ab=ba.

Допустим, нам нужно подсчитать количество отделений в шкафу (рис. 1).

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Это свойство также верно для трех и более сомножителей.

К примеру, нам нужно подсчитать количество отделений в двух одинаковых шкафах (рис. 2).

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

5 ∙3+5 ∙3 =5 ∙3 ∙2.

15+15=15 ∙2,

30=30.

3 ∙5+3 ∙5=3 ∙5 ∙2,

15+15=15 ∙2,

30=30.

Значит, 5 ∙3 ∙2=3 ∙5 ∙2=30.

Поэтому, для трех сомножителей переместительный закон умножения в общем виде выглядит так:

abc=acb=bac=bca=cab=cba.

Сочетательный закон умножения.
Результат умножения трех и более чисел не изменяется, если любые из этих сомножителей заменить их произведением.
Следовательно, мы можем группировать множители между собой каким угодно образом, и выполнять действие умножения с этими группами.

В общем виде для трех сомножителей сочетательный закон умножения можно выразить так:

abc=a(bc)=(ab)c=b(ac).

Этот закон можно назвать следствием переместительного закона умножения.

Так, при подсчете количества отделений в двух шкафах на рисунке 2, мы можем сперва найти число отделений в одном шкафу, а потом умножить результат на 2 :

(5 ∙3) ∙2=15 ∙2=30,

(3 ∙5) ∙2=15 ∙2=30,

а можем сперва найти общее количество рядов отделений в обоих шкафах, а после умножить их на количество отделений в ряду:

(3 ∙2) ∙5=6 ∙5=30.

Как видите, результат во всех случаях одинаковый.

Особые случаи умножения: умножение единицы и нуля

Если в произведении двух чисел один из сомножителей единица, то произведение равно второму сомножителю:

a ∙1=1 ∙a=a.

А при умножении единицы на любое число (например, 17 ) мы находим сумму семи единиц, то есть, то количество единиц, из которых состоит данное число. Следовательно, сумма этих единиц равна самому данному числу :

1+1+1+1+1+1+1=7.

Если в произведении любого количества сомножителей одним из сомножителей является нуль, то и произведение равно нулю:

ab0=0ab=a0c=0.

Умножение однозначных чисел

Умножение двух однозначных натуральных чисел a и b – это нахождения суммы b слагаемых, каждое из которых равно числу a, и при этом a и b являются натуральными числами.

Для облегчения вычисления, были посчитаны результаты умножения всех однозначных чисел друг на друга, и сведены в специальные таблицы умножения.

Умножение многозначного числа на однозначное

900+80+5+900+80+5+900+80+5+900+80+5.

Воспользуемся законами сложения и сгруппируем одинаковые слагаемые этого выражения вместе:

900+900+900+900+80+80+80+80+5+5+5+5,

(900+900+900+900)+(80+80+80+80)+(5+5+5+5).

Суммы в скобках мы можем заменить на произведение одинаковых слагаемых и числа этих слагаемых в каждых скобках:

900 ∙4+80 ∙4+5 ∙4.

Таким образом, чтобы умножить многозначное число на однозначное, достаточно умножить это однозначное число на количество единиц в каждом разряде многозначного числа, и сложить полученные результаты.

Умножение в столбик многозначного числа на однозначное

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

4 раза по 8 десятков – это 32 десятка. Прибавим к ним 2 десятка, которые получились после умножения однозначного числа на единицы, получим 32 десятка, то есть, 3 сотни и 2 десятка. Цифру 2 пишем под чертой в разряде десятков, а над разрядом сотен множимого 975 (в уме) ставим маленькую цифру 3 :

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

4 раза по 9 сотен – это 36 сотен. Прибавим к ним 3 сотни, которые держим в уме, получаем 39 сотен, или 3 тысячи и 9 сотен. Значит, пишем под горизонтальной чертой в разряде сотен цифру 9 и, поскольку в множимом 985 нет ни одной тысячи, то сразу запишем в результате под чертой цифру 3 в разряде тысяч:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Умножение многозначных чисел

Прежде чем рассказать, как в общем случае умножить одно многозначное число на другое, я расскажу о двух частных случаях умножения многозначных чисел:

Умножение на число, состоящее из единицы и любого количества нулей

327 ∙10 =3270

327 ∙100 =32700

Итак, чтобы умножить какое-нибудь число на другое, которое начинается на единицу, и заканчивается любым количеством нулей, достаточно к концу первого числа дописать столько нулей, сколько содержится во втором числе.

Умножение на число, которое начинается цифрами, и заканчивается любым количеством нулей

327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327+327.

(327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327)+ (327+327)+(327+327).

(327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2)+ (327 ∙2).

(327 ∙2) ∙10.

764 ∙3 =2292.

2292 ∙100 =229200.

Итак, чтобы умножить какое-нибудь число на другое, начинающееся любыми цифрами и заканчивающееся нулями, достаточно умножить первое число на число, образованное первыми цифрами второго, а к результату приписать справа столько нулей, сколько их было в конце второго числа.
Иными словами: нужно от второго числа отбросить нули в конце, умножить получившиеся числа, а к результату приписать справа столько нулей, сколько изначально отбросили.

Общее правило умножения чисел

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Количество слагаемых ( 168 ) мы можем разложить на разрядные слагаемые ( 100+60+8 ) и согласно сочетательному закону сложения сгруппировать их следующим образом : сто слагаемых плюс шестьдесят слагаемых плюс восемь слагаемых.

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Исходя из определения умножения, выражения в скобках мы можем представить не в виде суммы большого количества слагаемых, а как сумму произведений:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Таким образом, чтобы умножить два многозначных числа, достаточно последовательно умножить одно из этих чисел на количество единиц каждого из разрядов второго числа, и сложить полученные результаты.

Частное произведение – это число, полученное после умножения одного из сомножителей на количество единиц какого-либо разряда другого сомножителя.

Умножение в столбик многозначных чисел

При записи действия умножения в столбик сомножители располагаются друг под другом таким образом, чтобы совпадали соответствующие разряды обоих чисел ; под множителем проводим горизонтальную черту, и ставим между сомножителями знак действия умножения:

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

В частных произведениях обычно не пишут (опускают) нули в конце числа для упрощения записи. При этом следует не забывать, что, первую полученную цифру частного произведения нужно писать в том разряде, цифру которого мы умножаем на множимое.

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Некоторые особенности записи умножения в столбик

При записи нахождения произведения двух чисел в столбик существуют некоторые особенности, которые помогают сократить запись и упростить наглядность вычисления. Все они являются следствием свойств умножения.

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Что обозначают числа при умножении. Смотреть фото Что обозначают числа при умножении. Смотреть картинку Что обозначают числа при умножении. Картинка про Что обозначают числа при умножении. Фото Что обозначают числа при умножении

Попробуйте самостоятельно доказать справедливость этого утверждения. Пишите в комментариях, получилось ли это у вас или нет.

Изменение произведения чисел при изменении его сомножителей

Если увеличить один из сомножителей в несколько раз, произведение также увеличится в это же число раз.

18 ∙2 =36
18 ∙6 =108.

По-другому и быть не может, и вот почему.

Первое произведение представляет собой сумму двух слагаемых :

18+18.

Второе произведение – это сумма шести таких же слагаемых :

18+18+18+18+18+18.

(18+18)+(18+18)+(18+18).

Если уменьшить один из сомножителей в несколько раз, произведение также уменьшится в это же число раз.

Попробуйте самостоятельно доказать правильность этого свойства. Пишите в комментариях, получилось ли это у вас?

Если увеличить один из сомножителей в несколько раз, а второй в это же число раз уменьшить, то произведение при этом не поменяется.

32 ∙8 =256,

Увеличим первый сомножитель в 4 раза, а второй во столько же раз уменьшим:

128 ∙2 =256.

Теперь уменьшим первый сомножитель произведения 32 ∙8 в 4 раза, а второй уменьшим в это же число раз:

8 ∙32 =256.

Умножение произведения на число и числа на произведение

Если необходимо умножить произведение на число, нужно любой сомножитель этого произведения умножить на данное число, а результат умножить последовательно на оставшиеся сомножители.
(a ∙b ∙c) ∙d =(a ∙d) ∙b ∙c =(b ∙d) ∙a ∙c =(c ∙d) ∙a ∙b

10 ∙7 =70 (просто приписываем к семерке нуль),
70 ∙9 =630 (находим по таблице умножения 7 ∙9 =63 и приписываем в конце нуль).

Когда я пишу «находим по таблице умножения», это означает, что мы вспоминаем эту строку из таблицы, а не ищем её там на самом деле. Таблицу умножения нужно знать наизусть!

Если необходимо умножить число на произведение, нужно умножить данное число на любой сомножитель, а результат умножить на оставшиеся сомножители.
a ∙(b ∙c ∙d) =(a ∙b) ∙c ∙d =(a ∙c) ∙b ∙d =(a ∙d) ∙b ∙c.

30 ∙3 =90,

90 ∙2 =180.

Распределительный закон умножения (умножение суммы на число)

Когда мы рассматривали умножение многозначного и однозначного чисел, мы раскладывали число 975 на его разрядные слагаемые ( 900+70+5 ), а потом умножали на 4 отдельно каждое это слагаемое. Аналогично можно поступать при умножении числа на любую сумму.

(5+2+4+9)+(5+2+4+9)+ (5+2+4+9).

Все эти слагаемые представляют собой одну сумму чисел, сгруппированных в определенные группы. Запишем их без скобок:

5+2+4+9+5+2+4+9+5+2+4+9,

а затем, используя переместительный и сочетательный законы сложения, сгруппируем одинаковые слагаемые:

Основываясь на определении действия умножение, так как мы имеем в каждых скобках одинаковые слагаемые, переписываем это выражение следующим образом:

5 ∙3+2 ∙3+4 ∙3+9 ∙3.

Распределительный закон умножения: для умножения суммы на любое число, необходимо каждое слагаемое этой суммы умножить на данное число, а затем сложить полученные произведения.
Согласно переместительному закону умножения, это свойство справедливо и при умножении числа на сумму.
Для умножения числа на сумму, необходимо умножить данное число на каждое слагаемое этой суммы, а результаты полученных произведения сложить.
(a+b+c+d)∙z =z∙(a+b+c+d) =a ∙z+b ∙z+c ∙z+d ∙z.

Название распределительный происходит от того, что действие умножения на сумму распределяется между каждым из слагаемых этой суммы.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.3 / 5. Количество оценок: 3

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *