Что образуется митозом у растений
Что образуется митозом у растений
• У растений полюса митотического веретена не содержат центриолей и отличаются более диффузным характером, чем полюса веретена в клетках животных
До того как мы рассмотрим, каким образом в плоскости, образованной с участием премитотических структур, закладывается клеточная стенка, мы должны вкратце остановиться на основных событиях митоза. Хотя митоз в клетках растений и животных в основном одинаков, у растений этот процесс отличается рядом важных черт.
У растений в начале митоза вокруг ядра формируется так называемое «профазное веретено», образованное микротрубочками. Эта структура представлена на Несмотря на форму, она не является настоящим митотическим веретеном, поскольку не связана с хромосомами. Из профазного веретена при разрушении ядерной оболочки образуется настоящее веретено и микротрубочки получают доступ к хромосомам. В это же время происходит деполимеризация микротрубочек препрофазного кольца.
Как и в клетках млекопитающих, после образования митотического веретена в клетке не остается других цитоплазматических микротрубочек, кроме тех, которые связаны с ядром.
По основным элементам структурной организации митотическое веретено растительной клетки напоминает веретено клеток млекопитающих. В обоих случаях, два противоположно ориентированных набора микротрубочек сходятся в середине, где они присоединены к спаренным хромосомам.
Однако полюса двух типов веретена существенно различаются. У большинства клеток млекопитающих микротрубочки веретена сходятся в точке на полюсах, причем для каждого полюса характерно наличие органеллы, называемой центросомой. В основе каждой центросомы лежит пара центриолей, окруженных облаком аморфного материала, которые при сборке веретена действуют как сайты нуклеации микротрубочек.
Незадолго до наступления митоза вокруг ядра образуется профазное веретено.
Оно формируется в направлении, перпендикулярном к препрофазному кольцу,
и когда хромосомы становятся доступными, превращается в митотическое веретено.
Слева представлена фотография профазного веретена (проходящего сверху вниз)
и препрофазного кольца (расположенного горизонтально) в клетке суспензионной культуры табака.
Микротрубочки окрашены зеленым цветом, а ДНК — синим.
Расхождение пучков микротрубочек, распространяющихся от дуплицированных центросом, играет центральную роль в образовании и в биполярной организации веретена в клетках животных. В клетках растений центриоли отсутствуют, и, таким образом, структура полюсов веретена у них другая. Полюса веретена в клетках растений часто более размыты, чем в клетках млекопитающих, вероятно, потому, что у них отсутствуют определенные органеллы, выполняющие роль фокусов схождения микротрубочек.
В некоторых случаях «полюса» веретена в клетках растений имеют настолько расплывчатый характер, что они практически не уже, чем остальная его часть.
Как образуется веретено в клетках растений, если у них отсутствуют центросомы, служащие центрами организации полюсов? Пока детали сборки веретена у растений остаются неизвестными, однако существуют два механизма образования полюсов. Один из них состоит в том, что образование веретена инициируется самими хромосомами, как это можно наблюдать в некоторых клетках млекопитающих, у которых центросомы отсутствуют. Этот механизм предложен на основании экспериментов in vitro, в которых было продемонстрировано образование веретена в отсутствие центросом. На рисунке ниже показана последовательность происходящих при этом событий.
Сначала вблизи от хромосом происходит нуклеация микротрубочек, которые ориентированы случайно. Затем моторные белки микротрубочек, способные связывать и перемещать две микротрубочки противоположной полярности, могут сортировать микротрубочки с противоположной ориентацией, направляя их к противоположным концам каждой хромосомы. Микротрубочки сортируются таким образом, что их (+)-концы направлены внутрь, к хромосомам, что позволяет некоторым из них прикрепляться к кинетохорам — специальным участкам на хромосомах, служащим для прикрепления микротрубочек.
Во время сортировки другие белки могут связывать вместе (-)-концы микротрубочек. Общий результат согласованного действия трех этих процессов — нуклеации, сортировки и прикрепления, приводит к образованию биполярного веретена в отсутствие центриолей и центросом. Важно отметить, что биполярная организация такого веретена обеспечивается полярностью самих микротрубочек, которая определяет их сортировку и образование двух противоположно направленных пучков.
В иных случаях веретено образуется по механизму, аналогичному для клеток животных. Несмотря на отсутствие центриолей, сборка веретена у растений инициируется материалом, расположенным на полюсах, который нуклеирует микротрубочки. Это напоминает структуру центросом. Центросомы содержат пару центриолей и много организованных вокруг них специализированных белков. В электронном микроскопе эти белки выглядят как аморфное облако, окружающее центриоли.
Как считают, среди этих белков есть компоненты, способные нуклеировать образование микротрубочек веретена. Не исключено, что функция центриоли у животных заключается в сборке этого материала в одном месте с образованием центросомы, и в клетках растений содержится не столь упорядоченная и менее заметная ее форма, которая, тем не менее, способна нуклеировать микротрубочки и инициировать образование веретена. На это указывает существование двух «полярных шапок», которые образуются на полюсах веретена в некоторых клетках растений до начала разрушения у них ядерной оболочки. Недавно у растений обнаружены некоторые белки, представляющие собой компоненты аморфного материала, присутствующего вокруг центриолей в клетках животных, однако пока преждевременно говорить об их роли.
Веретено растительной клетки отличается от этой же структуры клеток животных тем, что у растений находится относительно немного астральных микротрубочек. Эти микротрубочки, которые расходятся от обратной стороны полюсов веретена в цитоплазму, взаимодействуют с кортексом клеток животных и служат для позиционирования и ориентировки веретена. Астральные микротрубочки клеток животных также играют важную роль в формировании и позиционировании сократительного кольца, которое разделяет клетку при цитокинезе.
Благодаря этим функциям астральные микротрубочки формируют плоскость, в которой происходит деление клетки. Напротив, область деления растительной клетки определяется даже до момента образования митотического веретена. Какую роль могут играть астральные микротрубочки в клетках растений пока неизвестно, хотя они, вероятно, участвуют в позиционировании оси веретена.
Митотическое веретено у клеток растений и животных отличается, главным образом, организацией полюсов.
Полюса веретена в клетках животных прочно фокусированы на центриолях и характеризуются большим количеством астральных микротрубочек.
Полюса веретена клеток растений имеют более диффузный характер и меньшее количество астральных микротрубочек.
На фотографиях слева видны различия формы вертена, связанные с особенностями его строения.
Микротрубочки окрашены зеленым, ДНК голубым, а области вокруг центриолей видны как два ярких желтых пятна,
находящихся на полюсах веретена клеток животных. По данным экспериментов in vitro, предполагается,
что в результате комбинации нуклеации микротрубочек хромосомами и действия двух типов моторных белков микротрубочек в отсутствие центросом может образоваться биполярное митотическое веретено.
Для разделения микротрубочек на две группы, с (+)-концами, расположенными напротив друг друга,
требуется моторный белок, который может связать две микротрубочки противоположной полярности и продвигаться по направлению к их (+)-концам (показан зеленым цветом).
Полюса образуются с помощью моторных белков, которые связываются с двумя микротрубочками одинаковой полярности и движутся к их (-)-концам. Последовательность событий мейоза включает два клеточных деления.
При первом делении происходит разделение гомологичных хромосом,
при втором разделяются индивидуальные хроматиды (каждой хромосомы).
При митозе происходит только разделение хроматид.
Учебное видео митоз и клеточный цикл
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Митоз и мейоз
Жизненный цикл клетки (клеточный цикл)
С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.
Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.
Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.
Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.
ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).
Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).
Мейоз
В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).
Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.
Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.
Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.
Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).
Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.
Бинарное деление надвое
При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.
Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Что образуется митозом у растений
Для каждой особенности деления животной клетки установите, характерна она для митоза (1) или мейоза (2):
ОСОБЕННОСТИ | ТИП ДЕЛЕНИЯ | ||
ОСОБЕННОСТИ КЛЕТОЧНОГО ДЕЛЕНИЯ | ВИД ДЕЛЕНИЯ |
ОСОБЕННОСТИ ДЕЛЕНИЯ | ВИД ДЕЛЕНИЯ |