Что образуется в хлоропластах
Хлоропласты
Хлоропласты являются одним из видов пластид. Хлоропласты имеют зеленый цвет за счет преобладающего в них пигмента хлорофилла. Основная их функция — фотосинтез.
Количество данных органоидов в клетке варьирует. У некоторых водорослей в клетках содержится одни большой хлоропласт, часто причудливой формы. У высших растений их множество, особенно в мезофильной ткани листьев, где количество может достигать сотни штук на клетку.
У высших растений размер органоида около 5 мкм, форма округлая слегка вытянутая в одном направлении.
Хлоропласты в клетках развиваются из пропластид или путем деления надвое ранее существующих.
Строение хлоропласта
В строении хлоропластов выделяют внешнюю и внутреннюю мембраны, межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.
Тилакоид представляет собой ограниченное мембраной пространство в форме приплюснутого диска. Тилакоиды в хлоропластах объединяются в стопки, которые называют гранами. Граны связаны между собой удлиненными тилакоидами — ламеллами.
Полужидкое содержимое хлоропласта называется стромой. В ней находятся его ДНК и РНК, рибосомы, обеспечивающие полуавтономность органоида (см. Симбиогенез).
Также в строме находятся зерна крахмала. Они образуются при избытке углеводов, образовавшихся при фотосинтетической активности. Жировые капли обычно формируются из мембран разрушающихся тилакоидов.
Функции хлоропластов
Основная функция хлоропластов — это фотосинтез — синтез глюкозы из углекислого газа и воды за счет солнечной энергии, которая улавливается хлорофиллом. В качестве побочного продукта фотосинтеза выделяется кислород. Однако процесс этот сложный и многоступенчатый, при котором синтезируются и побочные продукты, использующиеся как в самом хлоропласте, так и в остальных частях клетки.
Основным фотосинтетическим пигментом является хлорофилл. Он существует в нескольких разных формах. Кроме хлорофилла в фотосинтезе принимают участие пигменты каротиноиды.
Пигменты локализованы в мембранах тилакоидов, здесь протекают световые реакции фотосинтеза. Кроме пигментов здесь присутствуют ферменты и переносчики электронов. Хлоропласты стараются расположиться в клетке так, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету.
Хлорофилл состоит из длинного углеводного кольца и порфириновой головки. Хвост гидрофобен и погружен в липидный слой мембран тилакоидов. Головка гидрофильна и обращена к строме. Энергия света поглощается именно головкой, что приводит к возбуждению электронов.
Электрон отделяется от молекулы хлорофилла, который после этого становится электроположительным, т. е. оказывается в окисленной форме. Электрон принимается переносчиком, которые передает его на другое вещество.
Разные виды хлорофилла отличаются между собой несколько различным спектром поглощения солнечного света. Больше всего в растениях хлорофилла А.
В строме хлоропласта происходят темновые реакции фотосинтеза. Здесь находятся ферменты цикла Кальвина и другие.
Хлоропласты: строение и функции
Содержание:
Хлоропласты – двухмембранные органоиды растительных клеток, именно они играют ключевую роль в одном из самых важных биологических процессов в природе – фотосинтезе. В частности именно хлоропласты в процессе фотосинтеза выделяют зеленый пигмент хлорофилл, благодаря которому листья деревьев приобретают зеленый цвет (впрочем, не только листья, но и многие другие представители растительного мира, например водоросли). Какое строение хлоропластов, какие функции и процессы они осуществляются в жизнедеятельности клетки, об этом читайте далее.
Количество хлоропластов в растительной клетке может быть разным, у некоторых водорослей в клетке содержится лишь один большой хлоропласт, часто причудливой формы, в то время как в клетках некоторых высших растений находится множество хлоропластов. Особенно их много в так званных мезофильных тканях листьев, там одна клетка может иметь в себе до сотни хлоропластов.
Строение
Устройство хлоропласта включает в себя внутреннюю и внешнюю мембрану, (как и в клетке, они играют роль защитного барьера), межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.
Вот так строение хлоропласта выглядит на картинке.
Как видим с картинки внутри хлоропласта имеется полужидкое пространство, именуемое стромой и приплюснутые диски – это тилакоиды. Последние объединены в стопки, названные гранамы, и сами граны соединены друг с другом при помощи длинных тилакоид, которые называют ламеллами. Именно в тилакоидах находится важный зеленый пигмент – хлорофилл.
В полужидкой строме хлоропласта находятся его молекулы ДНК и РНК, а также рибосомы, обеспечивающие этому важному органоиду некую автономность внутри клетки. Помимо этого в строме хлоропласта есть зерна крахмала, которые образуются при избытке углеводов, образованных при фотосинтетической активности.
Функции
Самая важная функция хлоропласта – это, конечно же, осуществление фотосинтеза. Об этом удивительном процессе на нашем сайте есть отдельная большая статья. Тем не менее, напомним, что при фотосинтезе хлоропластами растительных клеток при помощи солнечного света осуществляется синтез глюкозы из углекислого газа и воды. При этом в качестве важного «побочного продукта» выделяется кислород.
Основным фотосинтезирующим пигментом в этом процессе является хлорофилл, локализированный в мембранах тилакоидов, именно здесь проходят световые реакции фотосинтеза. Кроме хлорофилла тут же присутствуют ферменты и переносчики электронов.
Интересный факт: хлоропласты стараются расположиться в клетке таким образом, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету. Или говоря простым языком, хлоропласты в клетке всегда тянутся на свет.
Строение хлорофилла
Что же касается строения самого хлорофилла, то он состоит из длинного углеводного хвоста и порфириновой головки. Хвост его гидрофобен, то есть боится влаги, поэтому погружен в тилакоид, головка наоборот любит влагу и находится в жидкой субстанции хлоропласта – строме. Поглощение солнечного света осуществляется именно головкой хлорофилла.
К слову биологами различается несколько разных видов хлорофилла: хлорофилл a, хлорофилл b, хлорофилл c1, хлорофилл c2 и так далее, все они обладают разным спектром поглощения солнечного света. Но больше всего в растениях именно хлорофилла а.
Рекомендованная литература и полезные ссылки
Видео
И в завершение образовательное видео по теме нашей статьи.
Хлоропласты: определение, строение, функции
Хлоропласты – это уникальные структуры, обнаруженные в растительных клетках, которые специализируются на преобразовании солнечного света в энергию, которую растения могут использовать. Этот процесс называется фотосинтезом.
Хлоропласты считаются органеллами в клетках растений. Органеллы – это специальные структуры в клетках, которые выполняют конкретные функции. Основная функция хлоропласта – фотосинтез. Другие функции хлоропластов включают борьбу с болезнями, накопление энергии для клетки и изготовление аминокислот. А подробнее о фотосинтезе читайте в учебнике по биологии за 9 класс В.И. Соболя.
Большинство хлоропластов овальной формы, но они могут быть и в форме звезды, чашки и ленты. Некоторые хлоропласты небольшие по сравнению с клеткой, тогда как другие могут занять большинство пространства внутри клетки.
Структура хлоропластов достаточно сложная. Внешняя часть хлоропласта защищена гладкой внешней мембраной, которая имеет избирательную проницаемость. Непосредственно во внешней мембране находится внутренняя мембрана, которая контролирует, какие молекулы могут проходить в хлоропласт и наружу. Внешняя мембрана, внутренняя мембрана и жидкость между ними составляют оболочку хлоропласта.
Тело хлоропласта состоит из гидрофильной белковой массы – стромы или матрикса. Это жидкость внутри хлоропласта, где плавают другие структуры, такие как тилакоиды. Строма пронизана системой двохмембранних пластин – ламелей, которые располагаются параллельными рядами. Парные ламели сливаются концами и образуют замкнутое кольцо – мешочек, который называется диском.
Пигменты придают хлоропласту и растению свою окраску. Самый распространенный пигмент – хлорофилл, который придает растениям зеленый цвет. Хлорофилл помогает поглощать энергию от солнечного света. Хлоропласты также имеют собственную ДНК и рибосомы для изготовления белков с РНК.
Хлоропласты используют фотосинтез для преобразования солнечного света в пищу. Хлорофилл захватывает энергию от света и накапливает ее в специальной молекуле под названием АТФ (аденозинтрифосфат). Позже АТФ сочетается с углекислым газом и водой для получения сахаров, таких как глюкоза, которую растение может использовать как пищу.
Интересные факты о хлоропластах:
В простых клетках, как у водорослей, может быть только один-два хлоропласты. Однако сложные растительные клетки могут содержать сотни.
Хлоропласты иногда могут передвигаться внутри клетки, чтобы расположиться там, где они лучше могут поглощать солнечный свет.
«Хлоро» в хлоропласте произошло от греческого слова chloros (означает зеленый).
Наиболее обильным белком в хлоропластах является белок Рубиско. Рубиско, пожалуй, самый распространенный белок в мире.
Клетки человека и животных не нуждаются в хлоропластах, поскольку мы получаем свою энергию от пищи и ее переваривания, а не через фотосинтез.
Ученые подсчитали, что в одном квадратном миллиметре листа есть около 500 000 хлоропластов.
На самом деле есть разные цвета хлорофилла. Хлорофилл А – зеленый, это самый распространенный тип. Хлорофилл С – золотистого или коричневого цвета.
Нужно выполнить домашнее задание по биологии? Ищите все готово в разделе «ГДЗ и решебники по биологии за 9 класс».
Хлоропласт
Что такое хлоропласт
Хлоропласты (греч. «хлоро» – зеленый, «пластос» – вылепленный) – это пластиды, которые содержатся в растительных клетках. Пластидами называют мембранные органоиды растительных клеток, в которых осуществляется синтез различных веществ. Под органоидами, или органеллами подразумевают маленькие клеточные структуры.
Выделяют три вида пластид: лейкопласты, хромопласты и хлоропласты. Лейкопласты содержатся в семенах и клубнях растений и не имеют окраса, хромопласты – в клетках цветов, плодов и листьев, придают им яркую окраску, привлекающую насекомых-опылителей. Хлоропласты содержатся в зеленых органах растений. Хлоропласты, хромопласты и лейкопласты способны переходить друг в друга. В конце вегетации растения разрушается хлорофилл и хлоропласты утрачивают свой зеленый цвет, затем переходят в хромопласты. При позеленении клубней картофеля лейкопласты переходят в хлоропласты.
С помощью хлоропластов солнечный свет преобразуется в энергию. Этот процесс называют фотосинтезом. При фотосинтезе хлоропласты растительных клеток с помощью солнечного света из воды и углекислого газа синтезируют глюкозу.
Хлоропласты являются органеллами в клетках растений и представляют собой особые структуры в клетках с определенным набором функций. Так, главная функция хлоропластов – важнейший биологический процесс фотосинтез.
Клетки животных и человека не нуждаются в хлоропластах, так как эти организмы получают энергию от употребляемой пищи, а не от солнечного света.
Характеристика хлоропластов
Для хлоропластов характерна овальная форма, реже – форма лент, чаши даже звезд. Также они отличаются и размерами. Некоторые хлоропласты занимают большую часть клетки, в то время как другие ничтожно малы по сравнению с размерами самой клетки. В основном этот показатель составляет 20-30 %.
Доказано, что в 1 кв. мм листа сосредоточено около полумиллиона хлоропластов.
Цвет хлоропластам и растениям придают пигменты. В частности, такой пигмент как хлорофилл придает зеленый цвет растениям. В процессе фотосинтеза именно хлоропласты выделяют хлорофилл, благодаря которому листья и стебли растений, а также водоросли имеют зеленый цвет.
Хлорофилл, упакованный белковыми и фосфолипидными молекулами, обладает способностью эффективно поглощать солнечную энергию, а затем передавать ее другим молекулам. Крое хлорофилла не существует других структур, способных обеспечивать протекание фотосинтеза.
Хлоропластам присущи собственная ДНК и рибосомы для изготовления белков с РНК.
Помимо хлорофилла хлоропласты содержат еще и каратиноиды. Чаще всего хлоропласты имеют форму выпуклой двухсторонней линзы диаметром 4-5 мкм и толщину 2-4 мкм. Длина хлоропластов достигает 10 мкм. Примечательно, что у некоторых видов зеленых водорослей длина хлоропластов составляет 50 мкм.
Особенности хлоропластов
Численность хлоропластов в клетках живых организмов различна. Например, в клетках водорослей может содержаться всего 1-2 крупных хлоропласта, а клетках сложных растений – до нескольких сотен. Среднее количество хлоропластов в клетке составляет 30-60 шт.
Хлоропласты способны передвигаться внутри клетки, выбирая наиболее удобное положение для максимального поглощения солнечного света. Другими словами, хлоропласты в клетке всегда тянутся к свету.
Хлоропластам собственно воспроизведение независимо от остальной части клетки.
Днем хлоропласты выстраиваются вдоль стенок, а ночью перемещаются к низу клетки.
В хлоропластах содержатся различные пигменты хлорофилла. В зависимости от растений выделяют:
Строение хлоропласта
Строение хлоропласта довольно-таки сложное. Оно одинаково для всех зрелых хлоропластов высших растений. В зависимости от нагрузки клеток, возраста хлоропластов, их физиологического состояния различна их структурированность.
Внешняя часть хлоропласта покрыта защитной гладкой внешней мембраной. Во внешней мембране располагается внутренняя мембрана, которая осуществляет контроль над молекулами, проходящими в хлоропласт и наружу. Мембраны играют роль защитного барьера в клетках от воздействия неблагоприятных факторов. Внешняя и внутренняя мембраны с жидкостью между ними представляют собой оболочку хлоропласта.
Тело хлоропласта состоит из стромы, или матрикса – белковой гидрофильной полужидкой массы, в которой плавают различные структуры, например, тилакоиды, ламеллы, граны, люмел. При слиянии парных ламелей образуется диск в виде круглого мешочка – тилакоида. Тилакоиды объединяются в граны. Через строму проходят параллельными рядами особые двухмембранные пластины – ламеллы, или длинные тилакоиды. Хлорофилл содержится в тилакоидах. Ламелла стромы напоминает полый плоский мешок или сеть разветвленных каналов. Именно в строме, или матриксе хлоропласта, заполняющей собой его внутреннее пространство, находятся такие важные молекулы, как ДНК и РНК (рибосомальная молекула), и рибосомы, а также зерна крахмала. Зерна крахмала являются временным хранилищем продуктов фотосинтеза.
Хлорофилл представляет собой длинный углеводный хвост и порфириновую головку. Солнечный свет поглощается именно головкой хлорофилла. При его поступлении к головке происходит возбуждение электронов и их отделение от хлорофиллов.
Оболочка хлоропласта
Наружная мембрана хлоропласта гладкая, в то время как внутренняя мембрана имеет складчатую структуру с гранами внутри. Мембранами названы липопротеиновые структуры, состоящие из липидов и белков. Мембраны отделяют содержимое клетки от внешней среды и регулируют обмен веществ между окружающей средой и клеткой. Пространство между мембранами заполнено стромой.
Хлорофилл, пигменты и ферменты, находящиеся в мембранах, образуют мембранную систему. Она состоит из множества мешочков, названных тилакоидами.
Функции и роль хлоропластов
Бесспорно, что самая важная и первоочередная функция хлоропластов – это осуществление фотосинтеза. Фотосинтез возможен только при наличии хлоропласта в клетках и тканях растения.
Процесс синтезирования глюкозы из воды и углекислого газа сопровождается выделением жизненно необходимого кислорода. Хлоропласты способный усваивать углекислоту. Немаловажно, что в процессе фотосинтеза кислород выступает его побочным продуктом.
Кроме хлорофилла в мембранах тилакоидов содержатся ферменты и переносчики электронов.
Хлоропласты одновременно с фотосинтезом участвуют и в других важных процессах. Один из них – сбор и накопление нужных веществ для производства необходимой растениям энергии. Так, в хлоропластах в виде капель откладываются жиры.
Очень важно, что хлоропласты имеют собственную ДНК.
Кроме того, хлоропласты связаны с производством веществ, которые устраняют патогенны, попадающие в растение.
Cодержимое хлоропласта
Внутри хлоропласта содержатся молекулы ДНК, граны и рибосомы. Гранами названы складчатые образования, которые состоят из тилакоидов. Внешне они похожи на моменты, сложенные в стопку толщиной 0,5 мкм. Граны располагаются в шахматном порядке и соединены друг с другом мостиками. Они увеличивают площадь внутренней мембраны для того, чтобы расположить на ней максимальное количество ферментов фотосинтеза.
В мембранах тилакоидов между слоями молекул липидов и белков находится важный зеленый пигмент – хлорофилл. Мембранные тилакоиды напоминают по форме плоские замкнутые мешки в форме диска. Число тилакоидов на одну грану неодинаковое. Тилакоиды в гране тесно сближены друг с другом. Полости камер тилакоидов всегда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы.
Рибосомы ответственны за биосинтез белка из аминокислот. Это микроскопические круглые органеллы, в состав которых входят две субчастицы, не имеющие мембранного строения. Рибосомы содержатся как в клетках растений, так и в клетках животных.
Признаки хлоропластов
Образование хлоропластов
Хлоропласты образуются из пропластид – маленьких бесцветных частиц в виде небольших пузырьков, отделенных от ядра. Пропластиды окружены двойной мембраной и молекулой ДНК.У пропластид отсутствует внутренняя мембранная система. Они способны делиться и передаваться от клетки к клетке.
В процессе образования хлоропласта из пропластиды внутренняя мембрана ее оболочки врастает внутрь пластиды. Начинают развиваться мембраны тилакоидов, которые, в свою очередь, создают граны и ламеллы стромы.
Так в темноте формируется этиопласт со структурой в виде кристаллической решетки. Под воздействие света она разрушается и формируется структура, состоящая из ламелл стромы и тилакоидов гран.
При формировании зеленого листа пропластиды путем деления преобразуются в хлоропласты.
Фотосинтез в хлоропластах
Фотосинтез – один из важнейших биологических процессов, лежащий в основе всей жизни нашей планеты. Именно благодаря этому процессу все живые организмы могут получать кислород, а значит – могут и дышать. Растения способны самостоятельно создавать полезные органически вещества, которые необходимы им для осуществления жизнедеятельности. Бесспорно, органические вещества, которые создают растения, это единственный источник жизни растений и животных, которые перерабатывают готовые органические вещества. Благодаря кислороду, который выделяется в процессе фотосинтеза, дышат все живые организмы на Земле.
Процесс фотосинтеза состоит из световой и темновой фаз.
С помощью фотосинтеза клетки, содержащие хлорофилл, под воздействием солнечной энергии образуют из неорганических веществ органические. Хлорофилл накапливает солнечную энергию в специальной молекуле аденозинтрифосфате, или АТФ. Именно АТФ аккумулирует энергию, необходимую для различных нужд клетки. Световая фаза может протекать только на мембранах тилакоидов и только на свету. В результате фоторазложения воды выделяется кислород.
Затем АТФ в сочетании с углекислым газом и водой вырабатывает глюкозу, необходимую для пищи растений. Темновая фаза протекает в строме хлоропластов, причем как на свету, так и в темноте. Поглощенный углерод восстанавливается, что сопровождается образованием углеводов и прочих органических соединений.
Интенсивность фотосинтеза прямо пропорциональна поглощению света хлорофиллом.
Таким образом, биологическая роль фотосинтеза заключается в преобразовании солнечной энергии в химическую энергию, присущую органическим соединениям.
Благодаря фотосинтезу из производимого кислорода образуется озоновый слой. Он защищает все живое на нашей планете от ультрафиолетовой радиации. Кислород поддерживает состав атмосферы и предотвращает рост объема углекислого газа. Доказано, что без фотосинтеза запасы кислорода на Земле хватило бы примерно на 3000 лет.
Строение хлоропласта
Строение хлоропласта
Растительный мир — одно из главных богатств нашей планеты. Именно благодаря флоре на Земле есть кислород, которым мы всё|все дышим, имеется огромная пищевая база, от которой зависит всё|все живое. Растения уникальны тем, что могут превращать химические соединения неорганической природы в органические вещества.
Делают они это посредством фотосинтеза. Этот важнейший процесс протекает в специфических растительных органоидах, хлоропластах. Этот мельчайший элемент фактически обеспечивает существование всей жизни на планете. Кстати, а что такое хлоропласт?
Основное определение
Так называются специфические структуры, в которых происходят процессы фотосинтеза, которые направлены на связывание углекислого газа и образование некоторых углеводов. Побочным продуктом является кислород. Это вытянутые в длину органоиды, достигающие в ширину 2-4 мкм, длина их доходит до 5-10 мкм. У некоторых видов зелёных водорослей порой|порой встречаются хлоропласты-гиганты, вытянутые на 50 мкм!
У этих же водорослей может быть другая особенность: на всю клетку у них имеется только один органоид этого вида. В клетках высших растений чаще всего имеется в пределах 10-30 хлоропластов. Впрочем, и в их случае могут встречаться яркие исключения. Так, в палисадной ткани обычной махорки имеется по 1000 хлоропластов на одну клетку. Для чего нужны эти хлоропласты? Фотосинтез – вот их главная, но далеко не единственная роль. Чтобы чётко понимать их значение в жизни растения, важно знать многие аспекты их происхождения и развития. Всё|Все это описывается в дальнейшей части статьи.
Происхождение хлоропласта
Итак, что такое хлоропласт, мы узнали. А откуда эти органоиды произошли? Как получилось, что у растений появился столь уникальный аппарат, который превращает углекислый газ и воду в сложные органические соединения?
В настоящее время среди учёных превалирует точка зрения об эндосимбиотическом происхождении данных органоидов, так как их самостоятельное возникновение в клетках растения довольно сомнительно. Отлично известно, что лишайник – это симбиоз водоросли и гриба. Одноклеточные водоросли при этом живут внутри грибной клетки. Сейчас учёные предполагают, что в незапамятные времена фотосинтезирующие цианобактерии проникли внутрь растительных клеток, а затем частично утратили «самостоятельность», передав большую|большую часть генома в ядро.
Но свою главную особенность новый органоид сохранил в полной мере. Речь идёт как раз о процессе фотосинтеза. Впрочем, сам аппарат, необходимый для выполнения данного процесса, формируется под контролем как клеточного ядра|ядра, так и самого|самого хлоропласта. Так, деление этих органоидов и прочие процессы, связанные с реализацией генетической информации на ДНК, контролируются ядром.
Доказательства
Относительно недавно гипотеза о прокариотическом происхождении этих элементов была не слишком популярна в научном сообществе, многие считали её «измышлениями дилетантов». Но после того как был проведён углублённый анализ нуклеотидных последовательностей в ДНК хлоропластов, это предположение получило блестящее подтверждение. Выяснилось, что эти структуры чрезвычайно схожи, даже родственны, ДНК бактериальных клеток. Так, аналогичная последовательность была найдена у свободноживущих цианобактерий. В частности, оказались чрезвычайно схожи гены АТФ-синтезирующего комплекса, а также в «аппаратах» транскрипции и трансляции.
Промоторы, которые определяют начало|начало считывания генетической информации с ДНК, а также терминальные нуклеотидные последовательности, которые отвечают за её прекращение, также организованы по образу и подобию бактериальных. Разумеется, миллиарды лет эволюционных преобразований смогли внести множество изменений в хлоропласт, но последовательности в хлоропластных генах остались абсолютно прежними. И это – неопровержимое, полное доказательство того, что хлоропласты и в самом деле когда-то имели прокариотического предка. Возможно, это был организм, от которого произошли также современные цианобактерии.
Развитие хлоропласта из пропластиды
«Взрослый» органоид развивается из пропластиды. Это маленькая, полностью бесцветная органелла, имеющая всего несколько микрон в поперечнике. Она окружена плотной двуслойной мембраной, которая содержит кольцевую ДНК, специфическую для хлоропласта. Внутренней мембранной системы эти «предки» органоидов не имеют. Из-за предельно малых размеров их изучение крайне затруднено, а потому данных об их развитии чрезвычайно мало|мало.
Известно, что несколько таких протопластид имеется в ядре каждой яйцеклетки животных и растений. В ходе развития зародыша они делятся и передаются другим клеткам. Это легко проверить: генетические признаки, которые так или иначе связаны с пластидами, передаются только по материнской линии.
Внутренняя мембрана протопластиды за время развития выпячивается внутрь органоида. Из этих структур вырастают мембраны тилакоидов, которые отвечают за образование гран и ламелл стромы органоида. В полной темноте протопастида начинает преобразовываться в предшественник хлоропласта (этиопласта). Этот первичный органоид характерен|характерен тем, что внутри него располагается довольно сложная кристаллическая структура. Как только на лист растения попадёт свет, она полностью разрушается. После этого происходит образование «традиционной» внутренней структуры хлоропласта, которая образована как раз-таки тилакоидами и ламеллами.
Отличия растений, запасающих крахмал
В каждой меристемальной клетке содержится несколько таких пропластид (их количество разнится в зависимости от вида растения и прочих факторов). Как только эта первичная ткань начинает преобразовываться в лист, предшественники органоидов превращаются в хлоропласты. Так, закончившие свой рост молодые листья пшеницы имеют хлоропласты в количестве 100-150 штук. Чуть сложнее обстоят дела|дела в отношении тех растений, которые способны к накоплению крахмала.
Они скапливают запас этого углевода в пластидах, которые именуются амилопластами. Но какое отношение эти органоиды имеют к теме нашей статьи? Ведь клубни картофеля не участвуют в фотосинтезе! Позвольте разъяснить этот вопрос более подробно.
Мы выяснили, что такое хлоропласт, попутно выявив связь этого органоида со структурами прокариотических организмов. Здесь ситуация схожа: учёные давно выяснили, что амилопласты, как и хлоропласты, содержат точно такую же ДНК и образуются из точно тех же протопластид. Следовательно, и рассматривать их следует в том же аспекте. Фактически амилопласты следует рассматривать в качестве особой разновидности хлоропласта.
Как образуются амилопласты?
Можно провести аналогию между протопластидами и стволовыми клетками. Проще говоря, амилопласты с какого-то момента начинают развиваться по несколько иному пути. Учёные, впрочем, узнали кое-что любопытное: им удалось добиться взаимного превращения хлоропластов из листьев картофеля в амилопласты (и наоборот). Каноничный пример, известный каждому школьнику – клубни картофеля на свету зеленеют.
Прочие сведения о путях дифференцирования этих органоидов
Мы знаем, что в процессе созревания плодов томата, яблок и некоторых других растений (и в листьях деревьев, трав и кустарников в осенний период) происходит процесс «деградации», когда хлоропласты в растительной клетке превращаются в хромопласты. Эти органоиды содержат в своём составе красящие пигменты, каротиноиды.
Превращение это связано с тем, что в определённых условиях происходит полное разрушение тилакоидов, после чего органелла приобретает иную внутреннюю организацию. Вот здесь-то мы снова возвращаемся к тому вопросу, который начали обсуждать в самом|самом начале статьи: влияние ядра|ядра на развитие хлоропластов. Именно оно, посредством особых белков, которые синтезируются в цитоплазме клеток, инициирует процесс перестройки органоида.
Строение хлоропласта
Поговорив о вопросах происхождения и развития хлоропластов, следует подробнее остановиться на их строении. Тем более что оно весьма интересно и заслуживает отдельного обсуждения.
Основная структура хлоропластов состоит из двух липопротеиновых мембран, внутренней и внешней. Толщина каждой составляет порядка 7 нм, расстояние между ними — 20-30 нм. Как и в случае других пластид, внутренний слой образует особые структуры, выпячивающиеся внутрь органоида. У зрелых хлоропластов существует сразу два типа таких «извилистых» мембран. Первые образуют ламеллы стромы, вторые – мембраны тилакоидов.
Ламеллы и тилакоиды
Нужно заметить, что прослеживается чёткая связь, которую имеет мембрана хлоропластов с аналогичными образованиями, находящимися внутри органоида. Дело в том, что некоторые её складки могут простираться от одной стенки до другой (как у митохондрий). Так что ламеллы могут образовывать либо своеобразный «мешок», либо разветвлённую сеть. Впрочем, чаще всего эти структуры располагаются параллельно друг другу и никак не связаны между собой.
Не стоит|стоит забывать, что внутри хлоропласта находятся ещё и мембранные тилакоиды. Это замкнутые «мешки», которые располагаются в виде стопки. Как и в предыдущем случае, между двумя стенками полости имеется расстояние в 20-30 нм. Столбики из этих «мешков» называются гранами. В каждом столбике может находиться до 50 тилакоидов, а в некоторых случаях их бывает ещё больше. Так как общие «габариты» таких стопок могут достигать 0,5 мкм, иногда они могут быть обнаружены при помощи обыкновенного светового микроскопа.
Общее|Общее количество гран, которые содержатся в хлоропластах высших растений, может доходить до 40-60. Каждый тилакоид так плотно прилегает к другому, что их внешние мембраны образуют единую плоскость. Толщина слоя в месте соединения может доходить до 2 нм. Заметим, что подобные структуры, которые образованы прилегающими друг к другу тилакоидами и ламеллами, совсем нередки.
В местах их соприкосновения также имеется слой, достигающий порой|порой тех же самых 2 нм. Таким образом, хлоропласты (строение и функции которых весьма сложны) представляют собой не единую монолитную структуру, а своеобразное «государство внутри государства». В некоторых аспектах строение этих органоидов не менее сложно, чем вся клеточная структура!
Граны связываются между собой именно при помощи ламелл. Но полости тилакоидов, которые образуют стопки, всегда замкнуты и никак не сообщаются с межмембранным пространством. Как видите, структура хлоропластов достаточно сложна.
Какие пигменты могут содержаться в хлоропластах?
Что может содержаться в строме каждого хлоропласта? Там имеются отдельные молекулы ДНК и немало рибосом. У амилопластов именно в строме откладываются крахмальные зерна|зёрна. Соответственно, у хромопластов там имеются красящие пигменты. Разумеется, встречаются различные пигменты хлоропластов, но наиболее распространённым является хлорофилл. Он подразделяется сразу на несколько видов:
У красных и бурых морских водорослей в хлоропластах не так уж и редко могут иметься совершенно другие виды органических красителей. В некоторых же водорослях вообще содержатся едва ли не всё|все существующие пигменты хлоропластов.
Функции хлоропластов
Разумеется, основной их функцией является преобразование световой энергии в органические компоненты. Сам фотосинтез происходит в гранах при непосредственном участии хлорофилла. Он поглощает энергию солнечного света, переводя её в энергию возбуждённых электронов. Последние, обладая избыточным её запасом, отдают излишки энергии, которая используется для разложения воды|воды и синтеза АТФ. При распаде воды|воды образуется кислород и водород. Первый, как мы уже писали выше, является побочным продуктом и выделяется в окружающее пространство, а водород связывается с особым белком, ферредоксином.
Он снова окисляется, передавая водород восстановителю, который в биохимии обозначается аббревиатурой НАДФ. Соответственно, его восстановленная форма — НАДФ-H2. Проще говоря, в процессе фотосинтеза происходит выделение следующих веществ: АТФ, НАДФ-H2 и побочного продукта в виде кислорода.
Энергетическая роль АТФ
Образующаяся АТФ крайне важна, так как является основным «аккумулятором» энергии, которая идёт на различные нужды|нужды клетки. НАДФ-H2 содержит восстановитель, водород, причём это соединение способно легко его отдавать в случае необходимости. Проще говоря, это эффективный химический восстановитель: в процессе фотосинтеза происходит множество реакций, которые без него попросту не смогут протекать.
Далее в дело вступают ферменты хлоропластов, которые действуют в темноте и вне гран: водород из восстановителя и энергия АТФ используются хлоропластом для того, чтобы начать синтез ряда органических веществ. Так как фотосинтез происходит в условиях хорошей|хорошей освещённости, накопленные соединения в тёмное время суток используются для нужд самих растений.
Вы справедливо можете заметить, что этот процесс в некоторых аспектах подозрительно похож на дыхание. Чем отличается от него фотосинтез? Таблица поможет вам разобраться в этом вопросе.
Вот чем отличается от дыхания фотосинтез.
Некоторые «парадоксы»
Большая|Большая часть дальнейших реакций протекает тут же, в строме хлоропласта. Дальнейший путь синтезированных веществ различен|различён. Так, простые сахара|сахара|сахара сразу выходят за пределы органоида, накапливаясь в других частях клетки в виде полисахаров, прежде всего — крахмала. В хлоропластах происходит как отложение жиров, так и предварительное накопление их предшественников, которые затем выводятся в другие области клетки.
Следует чётко понимать, что всё|все реакции синтеза требуют колоссального количества энергии. Единственным её источником является всё тот же фотосинтез. Это процесс, который зачастую требует столько энергии, что её приходится получать, разрушая вещества, образованные в результате предыдущего синтеза! Таким образом, большая|большая часть энергии, которая получается в его ходе, затрачивается на проведение множества химических реакций внутри самой|самой растительной клетки.
Лишь некоторая её доля используется для непосредственного получения тех органических веществ, которые растение берет|берёт для собственного роста|роста и р
звития либо откладывает в форме жиров или углеводов.
Статичны ли хлоропласты?
Принято считать, что клеточные органоиды, в том числе и хлоропласты (строение и функции которых нами подробно расписаны), находятся строго в одном месте. Это не так. Хлоропласты могут перемещаться по клетке. Так, на слабом свету|свету они стремятся занять положение близ наиболее освещённой стороны|стороны клетки, в условиях средней и слабой освещённости могут выбирать некие промежуточные положения, при которых удаётся «поймать» больше всего солнечного света. Это явление получило название «фототаксис».
Как и митохондрии, хлоропласты являются довольно-таки автономными органоидами. У них имеются собственные рибосомы, они синтезируют ряд высокоспецифичных белков, которые используются только ими. Есть даже специфичные ферментные комплексы, при работе которых вырабатываются особые липиды, требуемые для построения оболочек ламелл. Мы уже говорили о прокариотическом происхождении этих органоидов, но следует добавить, что некоторые учёные считают хлоропласты давними потомками каких-то паразитических организмов, которые сперва стали симбионтами, а затем и вовсе превратились в неотъемлемую часть клетки.
Значение хлоропластов
Для растений оно очевидно – это синтез энергии и веществ, которые используются растительными клетками. Но фотосинтез — это процесс, который обеспечивает постоянное накопление органического вещества в масштабах всей планеты. Из углекислого газа, воды|воды и солнечного света хлоропласты могут синтезировать огромное количество сложнейших высокомолекулярных соединений. Эта способность характерна|характерна только для них, и человек пока далёк от повторения этого процесса в искусственных условиях.
Вся биомасса на поверхности нашей планеты обязана своим существованием этим мельчайшим органоидам, которые находятся в глубинах растительных клеток. Без них, без проводимого ими процесса фотосинтеза на Земле не было бы жизни в её современных проявлениях.
Надеемся, вы узнали из этой статьи о том, что такое хлоропласт и какова его роль в растительном организме.
Строение хлоропласта
фотосинтезпротекает в специализированных органеллахклеток — хлоропластах|пластах. Хлоропластывысших растений имеют форму двояковыпуклойлинзы(диска), которая наиболее удобна дляпоглощения солнечных лучей. Их размеры,количество, расположение полностьюотвечают назначению: как можно эффективнеёпоглощать солнечную энергию, как можнополнее усваивать углерод. Установлено,что количество хлоропластов в клеткеизмеряется|измеряется десятками. Это обеспечиваетвысокое содержание этих органелл наединицу поверхности листа. Так, на 1мм2листа фасоли приходится 283тыс.хлоропластов, у подсолнечника — 465тыс.Диаметрхлоропластов в среднем 0,5-2мкм.
Строениехлоропластавесьма сложное. Подобно ядру имитохондриям хлоропласт окружен|окружёноболочкой, состоящей|стоящей из двухлипопротеидных мембран. Внутреннююсреду|среду представляет относительнооднородная субстанция — матрикс илистрома,которую пронизывают мембраны — ламеллы(рис.).Ламеллы, соединённые друг с другом,образуют пузырьки — тилакоиды.Плотно прилегая друг к другу, тилакоидыобразуют граны,которые различают даже под световыммикроскопом. В свою очередь, граны водном или нескольких местах объединеныдруг с другом с помощью межгранныхтяжей — тилакоидов стромы.
Свойствахлоропластов:способныизмененять ориентациюи перемещаться. Например, под влияниемяркого света хлоропласты поворачиваютсяузкой стороной диска к падающим лучами перемещаются на боковые стенки клеток.Хлоропласты передвигаются|передвигаются в направленииболее высокой концентрации СО2в клетке. Днём они обычно выстраиваютсявдоль стенок, ночью опускаются на дноклетки.
Химическийсоставхлоропластов: воды|воды— 75%; 75-80% общего количества сухих веществсоставляют орг. соединения, 20-25 %-минеральные.
Структурнойосновой хлоропластов являются белки|белки(50-55%сухой массы), половина из них составляют водорастворимыебелки|белки. Такое высокое содержаниебелков объясняется их многообразнымифункциями в составе хлоропластов(структурные белки|белки мембран, белки|белки-ферменты,транспортные белки|белки, сократительныебелки|белки, реценторные).
Важнейшейсоставной частью хлоропластов являютсялипиды,(30-40%сух. м.). Липиды хлоропластов представленытремя группами соединений.
Структурные компоненты мембран, которые представлены амфипатическими липоидами и отличаются высоким содержанием (более 50%) галактолипидов и сульфолипидов. Фосфолипидный состав характеризуется отсутствием фосфатидилэтаноламина и высоким содержанием фосфатидилглицерина (более 20 %). Свыше 60 % состава ЖК приходится на линолевую кислоту.
Фотосинтетическне пигменты хлоропластов — гидрофобные вв-а, относящиеся к липоидам (в клеточном соке — водорастворимые пигменты). Высшие растения содержат 2 формы зелёных пигментов: хлорофилл а и хлорофилл b и 2 формы жёлтых пигментов: каротины и ксантофиллы (каротиноиды). Хлорофиллы выполняет роль фотосенсибилизаторов, другие пигменты расширяют спектр действия фотосинтеза за счёт более полного поглощения ФАР. Каротиноиды защищают хлорофилл от фотоокисления, участвуют в транспорте водорода, образующегося при фотолизе воды|воды.
Жирорастворимые витамины — эргостерол (провитамин Д), витамины Е, К — сосредоточены практически целиком|целиком в хлоропластах|пластах, где участвуют в преобразовании световой энергии в химическую. В цитозоле клеток листа в основном находятся водорастворимые витамины. Так, у шпината содержание аскорбиновой кислоты|кислоты в хлоропластах в 4-5 раз меньше, чем в листьях.
Углеводыне являются конституционными веществамихлоропласта|пласта. Представлены фосфорнымиэфирами сахаров и продуктамифотосинтеза. Поэтому содержание углеводовв хлоропластах значительно колеблется(от 5 до 50 %). В активно функционирующиххлоропластах углеводы обычно ненакапливаются, происходит их быстрыйотток. При уменьшении потребности впродуктах фотосинтеза в хлоропластахобразуются крупные крахмальныезерна|зёрна. В этом случае содержание крахмаламожет возрасти до 50%сухой массы и активность хлоропластовснизится.
Минеральныевещества.Сами хлоропласты составляют 25-30 % массылиста, но в них сосредоточено до 80% Fe,70-72- Mgи Zn,50 — Cu,60% Ca,содержащихся в тканях листа. Этообъясняется высокой и разнообразнойферментативной активностью хлоропластов(входят с состав простетических группи кофакторов). Mgвходит в состав хлорофилла. Caстабилизирует мембранные структурыхлоропластов|пластов.
Возникновениеи развитие хлоропластов.Хлоропласты образуются в меристематическихклетках из инициальных частиц илизачаточных пластид (рис.). Инициальнаячастица состоит из амебоидной стрёмы,окружённой двухмембранной оболочкой.По мере роста|роста клетки инициалььныечастицы увеличиваются в размере иприобретают форму двояковыпуклой линзы,в стрёме появляются небольшие крахмальныезерна|зёрна. Одновременно внутренняямембрана начинает разрастаться, образуяскладки (впячивания), от которыхотшнуровываются пузырьки и трубочки.Такие образования называют пропластидами.Для дальнейшего их развития необходимсвет. В темноте же формируютсяэтиопласты,в которых образуется мембраннаярешетчатая структура — проламеллярноетело. На свету внутренние мембраныпропластид и этиопластов образуютгранильнуюсистему.Одновременно с этим также на свету вграны встраиваются вновь образованныемолекулы хлорофилла и других пигментов.Таким образом, структуры, которыеподготавливаются к функционированиюна свету, появляются и развиваютсятолько при его наличии.
Нарядус хлоропластами имеется ряд другихпластид, которые образуются либонепосредственно из пропластид, либоодна из другой путём взаимных превращений(рис.).К ним относятся накапливающие крахмаламилопласты (лейкопласты)и хромопласты|пласты,содержащие каротиноиды. В цветках иплодах хромопласты|пласты возникают наранних стадиях развития пропластид.Хромопластыосенней листвы представляют собойпродукты деградации хлоропластов,в которых в качестве структур — носителейкаротнноидов выступают пластоглобулы.
Пигментыхлоропласта, участвующие в улавливаниисветовой энергии, а также ферменты,необходимые для световой фазыфотосинтеза, вмонтированы в мембранытилакоидов.
Ферменты,которые катализируют многочисленныереакции восстановительного циклауглеводов (темповой фазы фотосинтеза),а также разнообразные биосинтезы, в томчисле биосинтезы белков, липидов,крахмала, присутствуют главным образомвстроме,часть из них является периферическимибелками|белками ламелл.
Строениезрелых хлоропластов одинаково у всехвысших растений, так же как в клеткахразных органов|органов одного растения (листьях,зеленеющих корнях, коре, плодах). Взависимости от функциональной нагрузкиклеток, физиологического состоянияхлоропластов, их возраста различаютстепень их внутренней структурированности:размеры, количество гран, связь междуними. Так, в замыкающих клеткахустьицосновная функция хлоропластов —фоторегуляцияустьичных движений. Хлоропласты неимеют строгой гранальной структуры,содержат крупные крахмальные зерна|зёрна,набухшие тилакоиды, липофильные глобулы.Всё|Все это свидетельствует об их низкойэнергетической нагрузке (эту функциювыполняют митохондрии). Другая картинанаблюдается при изучении хлоропластовзелёных плодов томата. Наличие хорошоразвитой|развитой гранулярной системысвидетельствует о высокой фукциональнойнагрузке этих органелл и, вероятно,существенном вкладе фотосинтеза приформировании плодов.
Возрастныеизменения:Молодые характеризуются ламеллярноиструктурой, в таком состоянии хлоропластыспособны размножаться путём деления.В зрелых хорошо выражена система гран.В стареющих происходит разрыв тилакоидовстромы, связь между гранами уменьшается,в дальнейшем наблюдаются распадхлорофилла и деструкция гран. В осеннейлистве деградация хлоропластов приводитк образованию хромопластов.
Структурахлоропластов лабильнаи динамична,в ней отражаются всё|все условия жизнирастения. Большое влияние оказываетрежим минерального питания растений.При недостатке Nхлоропласты становятся в 1.5-2 раза мельче,дефицит Pи Sнарушает нормальную структуру ламелли гран, одновременная нехватка Nи Caприводит к переполнению хлоропластовкрахмалом из-за нарушения нормальногооттока ассимилятов. При недостатке Caнарушается структура наружной мембраныхлоропласта. Для поддержания структурыхлоропласта также необходим свет, втемноте идёт постепенное разрушениетилакоидов гран и стрёмы.
Видео по теме : Строение хлоропласта
Строение хлоропласта типично для пластид. Его оболочка состоит из двух мембран — внешней и внутренней, между которыми находится межмембранное пространство. Внутри хлоропласта, путём отшнуровывания от внутренней мембраны, образуется сложная тилакоидная структура. Гелеобразное содержимое хлоропласта называется стромой.
Каждый тилакоид отделен|отделён от стромы одинарной мембраной. Внутреннее пространство тилакоида называется люмен. Тилакоиды в хлоропласте объединяются в стопки — граны. Количество гран различно. Между собой они связаны особыми удлинёнными тилакоидами — ламеллами. Обычный же тилакоид похож на округлый диск.
В строме содержатся собственное ДНК хлоропластов в виде кольцевой молекулы, РНК и рибосомы прокариотического типа. Таким образом, это полуавтономный органоид, способный самостоятельно синтезировать часть своих белков. Считается, что в процессе эволюции хлоропласты произошли от цианобактерий, начавших жить внутри другой клетки.
Строение хлоропласта обусловлено выполняемой функцией фотосинтеза. Связанные с ним реакции происходят в строме и на мембранах тилакоидов. В строме — реакции темновой фазы фотосинтеза, на мембранах — световой. Поэтому они содержат различные ферментативные системы. В строме содержатся растворимые ферменты, участвующие в цикле Кальвина.
В мембранах тилакоидов содержатся пигменты хлорофиллы и каратиноиды. Все они участвуют в улавливании солнечного излучения. Однако ловят разные спектры. Преобладание того или иного типа хлорофилла в определённой группе растений обуславливает их оттенок — от зелёного до бурого и красного (у ряда водорослей). Больш