Что общее и что различное в свойствах твердого и жидкого

Введение: агрегатное состояние вещества

Агрегатное состояниесостояние какого-либо вещества, имеющее определенные свойства: способность сохранять форму и объем, иметь дальний или ближний порядок и другие. При изменении агрегатного состояния вещества происходит изменение физических свойств, а также плотности, энтропии и свободной энергии.

Выделяют четыре типа агрегатных веществ:

Кажется, что химия открывает нам свои тайны в этих удивительных превращениях. Однако это не так. Переход из одного агрегатного состояния в другое, а также броуновское движение или диффузия относятся к физическим явлениям, поскольку в этих превращениях не происходит изменений молекул вещества и сохраняется их химический состав.

Газообразное состояние

На молекулярном уровне газ представляет собой хаотически движущиеся, сталкивающиеся со стенками сосуда и между собой молекулы, которые друг с другом практически не взаимодействуют. Поскольку молекулы газа между собой не связаны, то газ заполняет весь предоставленный ему объем, взаимодействуя и изменяя направление только при ударах друг о друга.

К сожалению, невооруженным глазом и даже с помощью светового микроскопа увидеть молекулы газа невозможно. Однако газ можно потрогать. Конечно, если вы просто попробуете ловить молекулы газов, летающие вокруг, в ладони, то у вас ничего не получится. Но наверняка все видели (или делали это сами), как кто-то накачивал воздухом шину автомобиля или велосипеда, и из мягкой и сморщенной она становилась накачанной и упругой. А кажущуюся «невесомость» газов опровергнет опыт, описанный на странице 39 учебника «Химия 7 класс» под редакцией О.С. Габриеляна.

Это происходит потому, что в замкнутый ограниченный объем шины попадает большое количество молекул, которым становится тесно, и они начинают чаще ударяться друг о друга и о стенки шины, а в результате суммарное воздействие миллионов молекул на стенки воспринимается нами как давление.

Но если газ занимает весь предоставленный ему объем, почему тогда он не улетает в космос и не распространяется по всей вселенной, заполняя межзвездное пространство? Значит, что-то все-таки удерживает и ограничивает газы атмосферой планеты?

Совершенно верно. И это — сила земного тяготения. Для того чтобы оторваться от планеты и улететь, молекулам нужно развить скорость, превышающую «скорость убегания» или вторую космическую скорость, а подавляющее большинство молекул движутся значительно медленнее.

Тогда возникает следующий вопрос: почему молекулы газов не падают на землю, а продолжают летать? Оказывается, благодаря солнечной энергии молекулы воздуха имеют солидный запас кинетической энергии, который позволяет им двигаться против сил земного притяжения.

Что общее и что различное в свойствах твердого и жидкого. Смотреть фото Что общее и что различное в свойствах твердого и жидкого. Смотреть картинку Что общее и что различное в свойствах твердого и жидкого. Картинка про Что общее и что различное в свойствах твердого и жидкого. Фото Что общее и что различное в свойствах твердого и жидкого

Жидкое состояние

При повышении давления и/или снижении температуры газы можно перевести в жидкое состояние. Еще на заре ХIХ века английскому физику и химику Майклу Фарадею удалось перевести в жидкое состояние хлор и углекислый газ, сжимая их при очень низких температурах. Однако некоторые из газов не поддались ученым в то время, и, как оказалось, дело было не в недостаточном давлении, а в неспособности снизить температуру до необходимого минимума.

Жидкость, в отличие от газа, занимает определенный объем, однако она также принимает форму заполняемого сосуда ниже уровня поверхности. Наглядно жидкость можно представить как круглые бусины или крупу в банке. Молекулы жидкости находятся в тесном взаимодействии друг с другом, однако свободно перемещаются относительно друг друга.

Если на поверхности останется капля воды, через какое-то время она исчезнет. Но мы же помним, что благодаря закону сохранения массы-энергии, ничто не пропадает и не исчезает бесследно. Жидкость испарится, т.е. изменит свое агрегатное состояние на газообразное.

Испарениеэто процесс преобразования агрегатного состояния вещества, при котором молекулы, чья кинетическая энергия превышает потенциальную энергию межмолекулярного взаимодействия, поднимаются с поверхности жидкости или твердого тела.

Испарение с поверхности твердых тел называется сублимацией или возгонкой. Наиболее простым способом наблюдать возгонку является использование нафталина для борьбы с молью. Если вы ощущаете запах жидкости или твердого тела, значит происходит испарение. Ведь нос как раз и улавливает ароматные молекулы вещества.

Жидкости окружают человека повсеместно. Свойства жидкостей также знакомы всем — это вязкость, текучесть. Когда заходит разговор о форме жидкости, то многие говорят, что жидкость не имеет определенной формы. Но так происходит только на Земле. Благодаря силе земного притяжения капля воды деформируется.

Однако многие видели как космонавты в условиях невесомости ловят водяные шарики разного размера. В условиях отсутствия гравитации жидкость принимает форму шара. А обеспечивает жидкости шарообразную форму сила поверхностного натяжения. Мыльные пузыри – отличный способ познакомиться с силой поверхностного натяжения на Земле.

Еще одно свойство жидкости — вязкость. Вязкость зависит от давления, химического состава и температуры. Большинство жидкостей подчиняются закону вязкости Ньютона, открытому в ХIХ веке. Однако есть ряд жидкостей с высокой вязкостью, которые при определенных условиях начинают вести себя как твердые тела и не подчиняются закону вязкости Ньютона. Такие растворы называются неньютоновскими жидкостями. Самый простой пример неньютоновской жидкости — взвесь крахмала в воде. Если воздействовать на неньютоновскую жидкость механическими усилиями, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело.

Твёрдое состояние

Если у жидкости, в отличие от газа, молекулы движутся уже не хаотически, а вокруг определенных центров, то в твёрдом агрегатном состоянии вещества атомы и молекулы имеют четкую структуру и похожи на построенных солдат на параде. И благодаря кристаллической решетке твердые вещества занимают определенный объем и имеют постоянную форму.

Между твердыми и жидкими телами существует промежуточная группа аморфных веществ, представители которой с одной стороны за счет высокой вязкости долго сохраняют свою форму, а с другой – частицы в нем строго не упорядочены и находятся в особом конденсированном состоянии. К аморфным веществам относится целый ряд веществ: смола, стекло, янтарь, каучук, полиэтилен, поливинилхлорид, полимеры, сургуч, различные клеи, эбонит и пластмассы. Про аморфные тела подробно можно прочитать на странице 40 учебника «Химия 7 класс» под редакцией О.С. Габриеляна.

При определенных условиях вещества, находящиеся в агрегатном состоянии жидкости, могут переходить в твердое, а твердые тела, наоборот, при нагревании плавиться и переходить в жидкое.

Это происходит потому, что при нагревании увеличивается внутренняя энергия, соответственно молекулы начинают двигаться быстрее, а при достижении температуры плавления кристаллическая решетка начинает разрушаться и изменяется агрегатное состояние вещества. У большинства кристаллических тел объем увеличивается при плавлении, но есть исключения, например – лед, чугун.

В зависимости от вида частиц, образующих кристаллическую решетку твердого тела, выделяют следующую структуру:

У одних веществ изменение агрегатных состояний происходит легко, как, например, у воды, для других веществ нужны особые условия (давление, температура). Но в современной физике ученые выделяют еще одно независимое состояние вещества — плазма.

Плазмаионизированный газ с одинаковой плотностью как положительных, так и отрицательных зарядов. В живой природе плазма есть на солнце, или при вспышке молнии. Северное сияние и даже привычный нам костер, согревающий своим теплом во время вылазки на природу, также относится к плазме.

Искусственно созданная плазма добавляет яркости любому городу. Огни неоновой рекламы — это всего лишь низкотемпературная плазма в стеклянных трубках. Привычные нам лампы дневного света тоже заполнены плазмой.

Плазму делят на низкотемпературную — со степенью ионизации около 1% и температурой до 100 тысяч градусов, и высокотемпературную — ионизация около 100% и температурой в 100 млн градусов (именно в таком состоянии находится плазма в звездах).

Низкотемпературная плазма в привычных нам лампах дневного света широко применяется в быту.

Что общее и что различное в свойствах твердого и жидкого. Смотреть фото Что общее и что различное в свойствах твердого и жидкого. Смотреть картинку Что общее и что различное в свойствах твердого и жидкого. Картинка про Что общее и что различное в свойствах твердого и жидкого. Фото Что общее и что различное в свойствах твердого и жидкого

Для проверки усвоения материала предлагаем небольшой тест.

1. Что не относится к агрегатным состояниям:

Источник

§ 9. Твёрдое состояние вещества. Жидкие кристаллы

Кристаллическое состояние вещества. Твёрдое состояние вещества по своему строению и свойствам подразделяют на кристаллическое и аморфное.

Атомы, молекулы или ионы твёрдых кристаллических веществ, в отличие от жидкостей и газов, занимают строго определённое место в пространстве, которое, как вы знаете, называется узлом. Если соединить узлы, в которых находятся частицы твёрдого вещества, воображаемыми линиями, то получится правильная пространственная решётка, называемая кристаллической. Вы уже знаете четыре типа кристаллических решёток: ионные, атомные, молекулярные и металлические, — можете назвать физические свойства веществ с этими типами решёток, которые заметно различаются. Однако у всех кристаллических веществ есть общее свойство: каждое из них имеет свою, строго определённую температуру плавления.

Аморфность, её признаки и свойства. А что же такое аморфное состояние вещества? «Аморфный» в переводе с греческого означает «бесформенный», т. е. в аморфных веществах образующие его частицы не имеют определённого расположения по всему объёму, как в кристалле. Частицы, образующие аморфное вещество, расположены беспорядочно, и только ближние атомы или молекулы-соседи располагаются в относительном порядке. Поэтому аморфным называют такое состояние твёрдых веществ, при котором они, подобно веществам, находящимся в кристаллическом состоянии, какое-то время сохраняют свою форму, но при определённых условиях эта форма изменяется, что сближает их с жидкостями. Например, восковая свеча, поставленная вертикально, через некоторое время утолщается внизу. Попробуйте проделать нечто подобное с обыкновенной жевательной резинкой или кусочком пластилина. Результат будет таким же. По мере повышения температуры процесс размягчения ускоряется. Определённой температуры плавления у аморфных тел, в отличие от кристаллических, нет.

Помните у Пушкина: «Вода и камень, лёд и пламень»? Камень у поэта — символ твёрдости. Вы, разумеется, сможете назвать причину этого свойства камня. Он, как кусочек горной породы, состоит преимущественно из оксида кремния (IV), который имеет атомную кристаллическую решётку, а отсюда и большую твёрдость. Так ли всё просто в химическом мире? Оказывается, оксид кремния может быть не только кристаллическим твёрдым веществом, но и аморфным. В зависимости от условий затвердевания расплава (например, в зависимости от условий его охлаждения) в аморфном состоянии могут оказаться такие вещества, которые в обычном состоянии имеют кристаллическую структуру. Так, если расплавить кристалл кварца — оксида кремния (IV), то при его быстром охлаждении образуется плавленый аморфный кварц, который имеет меньшую плотность, чем кристаллический. Аморфный кварц широко используется для изготовления различных изделий, в том числе лабораторной посуды.

Аморфное состояние веществ неустойчиво, и рано или поздно оно переходит в кристаллическое. Например, в аморфном стекле под влиянием ударных нагрузок образуются мелкие кристаллы, и стекло мутнеет. Застывший твёрдый мёд засахаривается так же, как засахаривается при длительном хранении стекловидная карамель.

Пластическая сера (рис. 37), представляющая собой вещество в аморфном состоянии, через некоторое время превращается в кристаллическую ромбическую серу с молекулярной решёткой.

Что общее и что различное в свойствах твердого и жидкого. Смотреть фото Что общее и что различное в свойствах твердого и жидкого. Смотреть картинку Что общее и что различное в свойствах твердого и жидкого. Картинка про Что общее и что различное в свойствах твердого и жидкого. Фото Что общее и что различное в свойствах твердого и жидкого

Рис. 37. Получение пластической серы

Таким образом, вещества в аморфном состоянии с точки зрения их структуры можно рассматривать как очень вязкие жидкости, а с точки зрения их свойств — как твёрдые вещества.

Аморфное и кристаллическое состояния вещества, являясь двумя крайними полюсами твёрдого состояния, тем не менее могут встречаться одновременно у одного и того же вещества. Многие полимеры, представляя собой в целом аморфные вещества, вместе с тем имеют участки кристаллической структуры. Этим определяется, например, высокая прочность полипропиленового и капронового волокон.

Слово «аморфный» содержит в себе негативный оттенок. Однако это справедливо для характеристики личностных качеств человека. В мире химических веществ и материалов всё наоборот. Именно аморфные вещества являются нам в матовости драгоценного жемчуга, в медовом свечении янтаря, в скромном обаянии полудрагоценных опала и халцедона, в волшебном многоцветии витражей и мозаик (рис. 38), в изумительной игре света хрусталя и блеске зеркальных витрин.

Что общее и что различное в свойствах твердого и жидкого. Смотреть фото Что общее и что различное в свойствах твердого и жидкого. Смотреть картинку Что общее и что различное в свойствах твердого и жидкого. Картинка про Что общее и что различное в свойствах твердого и жидкого. Фото Что общее и что различное в свойствах твердого и жидкого

Рис. 38. Один из вит ражей собора Сент-Этьен в Меце (Франция). XIII в.

Аморфность — ценное качество полимеров, так как оно обусловливает такое их технологическое свойство, как термопластичность. Именно благодаря термопластичности полимер можно вытянуть в тончайшую нить (рис. 39), превратить в прозрачную плёнку или отлить в изделие самой замысловатой формы.

Что общее и что различное в свойствах твердого и жидкого. Смотреть фото Что общее и что различное в свойствах твердого и жидкого. Смотреть картинку Что общее и что различное в свойствах твердого и жидкого. Картинка про Что общее и что различное в свойствах твердого и жидкого. Фото Что общее и что различное в свойствах твердого и жидкого

Рис. 39. Светильник из световодов, выполненных из тонких нитей плексигласа

Относительность и условность в химии. Существование аморфных тел ещё раз доказывает философскую истину, что всё в мире относительно. Давайте посмотрим на пройденный материал под этим углом зрения.

Утверждение о том, что деление элементов на металлы и неметаллы универсально, является относительным, так как целый ряд элементов обладает пограничными свойствами — это и германий, и олово, и сурьма.

Один из наиболее ярких примеров относительности — двойственное положение водорода в Периодической системе (табл. 4). Каждому элементу там отведено строго определённое зарядом атомного ядра местоположение. И единственный элемент, которому в таблице Менделеева отведено два места, причём в резко противоположных группах (щелочных металлов и галогенов), — это водород.

Таблица 4
Положение водорода в периодической системе

Что общее и что различное в свойствах твердого и жидкого. Смотреть фото Что общее и что различное в свойствах твердого и жидкого. Смотреть картинку Что общее и что различное в свойствах твердого и жидкого. Картинка про Что общее и что различное в свойствах твердого и жидкого. Фото Что общее и что различное в свойствах твердого и жидкого

Деление химической связи на типы носит условный характер, так как все эти типы характеризуются определённым единством.

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи. Металлическая связь совмещает ковалентное взаимодействие атомов с помощью обобществлённых электронов и электростатическое притяжение между этими электронами и ионами металлов.

В веществах часто отсутствуют предельные случаи химической связи (или чистые химические связи). Например, фторид лития LiF относят к ионным соединениям. Фактически же в нём связь на 80% ионная и на 20% ковалентная. Правильнее поэтому, очевидно, говорить о степени полярности (ионности) химической связи.

Причиной единства всех типов и видов химических связей служит их одинаковая физическая природа — электронно-ядерное взаимодействие, сопровождающееся выделением энергии.

Относительна взаимообусловленность физических свойств веществ и типа их кристаллической решётки. Так, например, немало веществ с атомной кристаллической решёткой, отнюдь не характеризующихся твёрдостью (графит, красный фосфор). И другой вариант: не тугоплавки некоторые вещества с ионной кристаллической решёткой (легкоплавки селитры — нитраты щелочных металлов).

Жидкие кристаллы. Относительно и деление веществ на типы по их агрегатному состоянию. Об этом свидетельствуют так называемые жидкие кристаллы.

Жидкими кристаллами называются вещества, которые одновременно обладают свойствами жидкости (текучестью, способностью находиться в каплевидном состоянии) и твёрдого кристаллического вещества (анизотропией, т. е. зависимостью физических свойств — механических, тепловых, электрических и др. — от направления).

В настоящее время науке известно несколько тысяч веществ, образующих жидкие кристаллы. Жидкокристаллическое состояние присуще таким соединениям, молекулы которых имеют удлинённую, линейную форму. Для них направление осей молекул упорядоченно, т. е. сохраняется порядок во всём объёме по одному из трёх направлений пространства. Центры же масс молекул расположены беспорядочно.

В зависимости от того, как ориентируются молекулы в пространстве, различают три основных типа жидких кристаллов. В кристаллах первого типа оси молекул параллельны, а сами молекулы сдвинуты относительно друг друга на произвольные расстояния в направлении своих осей. В кристаллах второго типа молекулы параллельны друг другу и расположены слоями. Для кристаллов третьего типа характерно закручивание молекул в перпендикулярном направлении от слоя к слою.

Особенности строения обусловливают свойства жидких кристаллов. Так, возможностью хаотического поступательного движения молекул объясняется текучесть, а их упорядоченным расположением — анизотропия таких физических свойств, как упругость, электропроводность, диэлектрическая и магнитная проницаемость и др.

Изучение жидких кристаллов показало, что их свойства изменяются в зависимости от температуры, длины волны внешнего излучения, механической деформации, электрического и магнитного полей. Это определяет возможность их широкого применения в системах хранения и обработки информации, в индикаторах и т. п.

Одним из свойств жидких кристаллов, нашедших широкое применение, является изменение цвета в зависимости от температуры. Это свойство позволяет использовать их для выявления структурных дефектов непрозрачных объектов: благодаря неодинаковой теплопроводности дефекты вызывают различные цветовые эффекты в плёнке жидкого кристалла.

На основе жидких кристаллов разработаны приборы, позволяющие изменять падающий световой поток, — модуляторы. Модулятор состоит из плёнки жидкого кристалла, расположенной между прозрачными электродами, и диафрагмы, роль которой может играть оправа чувствительного слоя приёмника.

Напряжение, подаваемое на жидкий кристалл, изменяет степень рассеяния им падающего света; при этом коэффициент рассеяния в некоторых пределах линейно зависит от напряжения. Изменяя определённым образом напряжение, можно изменить прозрачность слоя жидкого кристалла и соответственно поток проходящего излучения.

Жидкие кристаллы, оптические свойства которых изменяются под действием электрического поля, используются в цифровых индикаторах (часы, калькуляторы, весы и т. п. (рис. 40). Принцип работы таких индикаторов следующий. Жидкокристаллическое вещество помещается между чёрной металлической пластиной и тонкой, прозрачной для света металлической плёнкой, нанесённой на покровное стекло.

Что общее и что различное в свойствах твердого и жидкого. Смотреть фото Что общее и что различное в свойствах твердого и жидкого. Смотреть картинку Что общее и что различное в свойствах твердого и жидкого. Картинка про Что общее и что различное в свойствах твердого и жидкого. Фото Что общее и что различное в свойствах твердого и жидкого

Рис. 40. Весы торговые с жидкокристаллическим дисплеем

Чёрная металлическая пластина и тонкая плёнка образуют конденсатор. Если на его обкладках напряжения нет, то свет проходит через жидкий кристалл и поглощается чёрной пластиной. Циферблат выглядит чёрным. Если к обкладкам конденсатора приложено напряжение, то жидкий кристалл рассеивает свет и становится непрозрачным. В этом случае циферблат будет светиться в тех местах, где создано электрическое поле. Если верхняя плёнка имеет форму цифры, то и область свечения получится в виде цифры. От создания первых индикаторов прошло всего лишь несколько лет, как мы увидели телевизоры (рис. 41) с жидкокристаллическим экраном. Изображение на экране такого телевизора высокого качества, а электроэнергии он потребляет меньше, чем обычный.

Что общее и что различное в свойствах твердого и жидкого. Смотреть фото Что общее и что различное в свойствах твердого и жидкого. Смотреть картинку Что общее и что различное в свойствах твердого и жидкого. Картинка про Что общее и что различное в свойствах твердого и жидкого. Фото Что общее и что различное в свойствах твердого и жидкого

Рис. 41. Телевизор с жидкокристаллическим экраном

Жидкие кристаллы играют большую роль в жизнедеятельности человеческого организма. Так, белок, входящий в состав мышечной ткани, обладает способностью образовывать жидкие кристаллы. Волокна гладких и поперечно-полосатых мышц имеют структуру жидкого кристалла, благодаря чему могут растягиваться и сжиматься, не разрушаясь. Вещество коллаген, содержащееся в опорных тканях (костях, сухожилиях) и в мозге, также близко по структуре к жидким кристаллам. Мозг человека по своей природе представляет сложную жидкокристаллическую систему. В белом веществе мозга и проводящих путях нервной системы жидкие кристаллы играют роль диэлектриков.

Форма жидких кристаллов наиболее удобна для протекания биологических процессов. Она соединяет в себе устойчивость к внешним воздействиям с необычайной пластичностью, гибкостью. Жидкокристаллические волокнистые образования обладают значительной прочностью, что необходимо для опорных тканей. Помимо этого, жидкокристаллическое состояние очень чувствительно ко всем внутриклеточным процессам. Это объясняет, почему жидкие кристаллы обнаруживаются в важнейших функциональных участках клетки.

Примеры относительности в биологии и физике. Огромное количество примеров относительности явлений можно привести из биологии. Вспомним лишь некоторые примеры из курса естествознания 10 класса. Например, вирусы — своеобразный мостик между живой и неживой природой. Они имеют свойства живых организмов, лишь попадая в клетку. Подобно живым организмам, вирусы, зацепившись за оболочку клетки, растворяют её и впрыскивают в клетку свою нуклеиновую кислоту. Эта РНК или ДНК заставляет клетку-хозяина производить многочисленные копии вируса. Вне клетки вирусы представляют собой кристаллические вещества, напоминая объекты неживой природы.

Другой пример связан с эвгленой зелёной. Она иллюстрирует относительность принадлежности простейших к животным, потому что, подобно растениям, содержит хлоропласты и на свету, как и растения, способна синтезировать органические вещества из углекислого газа и воды, т. е. осуществлять фотосинтез.

Замечательной физической иллюстрацией относительности явлений служит теория, которая так и называется — теория относительности А. Эйнштейна (1879—1955).

Мы привели всего лишь некоторые примеры относительности из ряда ключевых естественно-научных понятий. Это должно убедить вас в том, что в окружающем нас мире не так много абсолютных истин, что этот мир нарисован не только чёрной и белой красками, он многолик, многоцветен и бесконечно прекрасен.

Следующий параграф будет посвящён классификации и описанию свойств органических и неорганических веществ, а также доказательствам относительности приведённой классификации.

Источник

Презентация по физике для 7 класса на тему «Агрегатные состояния вещества»

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

Что общее и что различное в свойствах твердого и жидкого. Смотреть фото Что общее и что различное в свойствах твердого и жидкого. Смотреть картинку Что общее и что различное в свойствах твердого и жидкого. Картинка про Что общее и что различное в свойствах твердого и жидкого. Фото Что общее и что различное в свойствах твердого и жидкого

Описание презентации по отдельным слайдам:

Описание слайда:

Выполнила учитель физики МБОУ «СОШ № 77» г.Кемерово Ломиворотова Дарина Игоревна
Агрегатные состояния вещества

Описание слайда:
Описание слайда:

Расположение молекул в твердых телах
Молекулы расположены в определенном порядке – кристаллическая структура.
Молекулы колеблются возле своего места – сохраняя объем и форму твердого тела.
Притяжение между молекулами очень сильное

Описание слайда:

Расположение молекул в жидкостях
Молекулы расположены близко друг к другу, беспорядочно. Не расходятся на большие расстояния, сохраняя объем жидкости.
Жидкости текучи, трудно сжимаемы из – за действия сил отталкивания между молекулами.

Описание слайда:
Описание слайда:

Основные свойства трех состояний веществ
Газы заполняют весь предоставленный объем (все пространство). Хорошо сжимаются и расширяются.
Жидкости принимают форму сосуда. Имеют объем, не имеют форму. Трудно сжимаются.
Твердые тела имеют форму и объем. Трудно деформируются. Имеют кристаллическую структуру.

Описание слайда:

Основное отличие трех состояний вещества:
строение молекул и скорость их движения

Описание слайда:

Переход из одного состояния в другое используют в практике:
для получения сплавов
В работе технических устройств: паровой турбине, двигателе внутреннего сгорания

Описание слайда:

Изменение агрегатных состояний в природе:

Описание слайда:

Условия перехода вещества из одного состояния в другое:
Изменение температуры сопровождается выделением энергии
Увеличение температуры – нагрев – увеличение внутренней энергии вещества
Уменьшение температуры – охлаждение – уменьшение внутренней энергии вещества
Передавая телу энергию, можно перевести его из одного состояния в другое

Описание слайда:

Каким бывает лед?
Горячий лёд
Английский физик Бриджмен показал, что вода под давлением р

Описание слайда:

Сухой лёд
При сгорании угля можно получить не жар, а наоборот, холод. Для этого уголь сжигают в котлах, образующийся дым очищают и улавливают в нём углекислый газ. Его охлаждают и сжимают до давления 7*106 Па. Получается жидкая углекислота. Её хранят в толстостенных баллонах.
При открывании крана жидкая углекислота резко расширяется и охлаждается, превращаясь в твёрдую углекислоту – «сухой лёд».
Под влиянием теплоты хлопья сухого льда сразу переходят в газ, минуя жидкое состояние.

Описание слайда:

Плавление
— переход вещества из твердого состояния в жидкое

Описание слайда:

Чтобы расплавить тело, его нужно нагреть до определенной температуры
Температура, при которой тело плавится называется температурой плавления.

Описание слайда:

При плавлении:
увеличивается скорость движения молекул;
разрушается упорядоченность строения молекул (кристаллическая структура нарушается);
силы притяжения между молекулами ослабевают

Описание слайда:

Кристаллизация
— переход вещества из жидкого состояния в твердое

Описание слайда:

Нагретое тело охлаждается до определенной температуры
Температура, при которой вещество кристаллизуется, называется температурой кристаллизации
Температура плавления равна температуре кристаллизации

Описание слайда:

1. Какое состояние вещества названо не правильно?
Жидкое
Парообразное
Твердое
2. Выберите правильное утверждение.
В различных состояниях вещества обладают разными свойствами
В различных состояниях вещества обладают одинаковыми свойствами
В различных состояниях вещества обладают разными свойствами в зависимости от внешних условий
3. На каких станках не обрабатывают тела для придания им нужной формы и объема?
НА токарных
На шлифовальных
На микропроцессорных счетчиках импульса
4. Чего нет у твердого тела?
Формы
Объема
Внутреннего давления
5. Какое тело может изменять свою форму?
Жидкое
Твердое
Абразивное
6. Выберите правильное утверждение.
Жидкости меняют свою форму, но сохраняют объем
Жидкости меняют свою форму, но сохраняют давление
Жидкости меняют свою форму, но сохраняют температуру
7. Чего нельзя сказать про газы?
Газы бесцветны
Газы прозрачны
Газы аморфны

Описание слайда:

1. Какое состояние вещества названо не правильно?
Парообразное
2. Выберите правильное утверждение.
В различных состояниях вещества обладают разными свойствами
3. На каких станках не обрабатывают тела для придания им нужной формы и объема?
На микропроцессорных счетчиках импульса
4. Чего нет у твердого тела?
Внутреннего давления
5. Какое тело может изменять свою форму?
Жидкое
6. Выберите правильное утверждение.
Жидкости меняют свою форму, но сохраняют объем
7. Чего нельзя сказать про газы?
Газы аморфны

Описание слайда:

Параграф 12
1. Какие три состояния вещества вам известны?
2. Перечислите свойства твёрдых тел.
3. Назовите свойства жидкостей.
4 Какими свойствами обладают газы?
Домашнее задание

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *