Что общего у астрономии и физики
Что общего у астрономии и физики
Вопрос о положении Земли во Вселенной, о том, неподвижна она или движется вокруг Солнца, в XVI-XVII вв. приобрел важное значение как для астрономии, так и для миропонимания. Гелиоцентрическое учение Николая Коперника явилось не только важным шагом в решении этой научной проблемы, но и способствовало изменению стиля научного мышления, открыв новый путь к пониманию происходящих явлений.
Много раз в истории развития науки отдельные мыслители пытались ограничить возможности познания Вселенной. Пожалуй, последняя такая попытка случилась незадолго до открытия спектрального анализа. «Приговор» был суров: «Мы представляем себе возможность определения их (небесных тел) форм, расстояний, размеров и движений, но никогда, никакими способами мы не сможем изучить их химический состав. » (О. Конт).
Изучаются движение в гравитационном и магнитном полях, описание состояния вещества; процессы излучения; индукционные токи в плазме, образующей космические объекты. Разрабатываются способы удержания плазмы в ограниченном объеме, концепция «бесстолкновительной» плазмы, МГД-генераторы, квантовые усилители излучения (мазеры) и т. д.
Астрономические наблюдения издавна позволяли людям ориентироваться в незнакомой местности и на море. Развитие астрономических методов определения координат в XV-XVII вв. в немалой степени было обусловлено развитием мореплавания и поисками новых торговых путей. Составление географических карт, уточнение формы и размеров Земли на долгое время стало одной из главных задач, которые решала практическая астрономия. Искусство прокладывать путь по наблюдениям за небесными светилами, получившее название навигация, используется теперь не только в мореходном деле и авиации, но и в космонавтике.
Астрономию и химию связывают вопросы исследования происхождения и распространенности химических элементов и их изотопов в космосе, химическая эволюция Вселенной. Возникшая на стыке астрономии, физики и химии наука космохимия тесно связана с астрофизикой, космогонией и космологией, изучает химический состав и дифференцированное внутреннее строение космических тел, влияние космических явлений и процессов на протекание химических реакций, законы распространенности и распределения химических элементов во Вселенной, сочетание и миграцию атомов при образовании вещества в космосе, эволюцию изотопного состава элементов. Большой интерес для химиков представляют исследования химических процессов, которые из-за их масштабов или сложности трудно или совсем невоспроизводимых в земных лабораториях (вещество в недрах планет, синтез сложных химических соединений в темных туманностях и т. д.).
Астрономия и химия помогли друг другу в открытии новых химических элементов в атмосфере звезд, в становлении спектральных методов; в изучении химических свойства газов, составляющих небесные тела; в открытии в межзвездном веществе молекул, содержащих до девяти атомов, в доказательстве существования сложных органических соединений метилацетилена и формамида и т. д.
Связь астрономии и биологии определяется их эволюционным характером. Астрономия изучает эволюцию космических объектов и их систем на всех уровнях организации неживой материи аналогично тому, как биология изучает эволюцию живой материи. Астрономию и биологию связывают проблемы возникновения и существования жизни и разума на Земле и во Вселенной; гипотезы происхождения жизни, приспособляемость и эволюция живых организмов; проблемы земной и космической экологии и воздействия космических процессов и явлений на биосферу Земли; загрязнение окружающего космического пространства веществом и излучением.
Связь астрономии с историей и обществоведением, изучающим развитие материального мира на качественно более высоким уровне организации материи, обусловлена влиянием астрономических знаний на мировоззрение людей и развитие науки, техники, сельского хозяйства, экономики и культуры; вопрос о влиянии космических процессов на социальное развитие человечества остается открытым.
Красота звездного неба будила мысли о величии мироздания и вдохновляла писателей и поэтов. Астрономические наблюдения несут в себе мощный эмоциональный заряд, демонстрируют могущество человеческого разума и его способности познавать мир, воспитывают чувство прекрасного, способствуют развитию научного мышления. Так появились древние мифы и легенды как литературные произведения; научно-фантастическая литература.
§ 1. Что изучают физика и астрономия (окончание)
5. Астрономия изучает явления, происходящие с небесными телами. К небесным телам относятся звёзды, планеты (в том числе и Земля), спутники планет (например, Луна), кометы («хвостатые звёзды», как их иногда называют), метеориты. Наша Земля и другие планеты со своими спутниками, кометы вращаются вокруг Солнца и составляют Солнечную систему. Системы звёзд, их скопления представляют собой галактики.
Астрономия изучает движение звёзд, планет, их спутников, а также явления, происходящие в атмосфере планет, в звёздах и других небесных телах.
6. Физика и астрономия тесно связаны между собой. Эта связь проявляется прежде всего в единстве земных и небесных явлений. Так, движение Луны вокруг Земли и падение тел на Землю происходят по одной и той же причине. Одинаковы процессы, происходящие, например, в недрах Солнца и в ускорителях частиц, установленных на Земле.
Развитие физики приводит к новым открытиям в астрономии. В частности, изучить строение и состав звёзд стало возможным благодаря использованию специальных физических методов исследования. Космические полёты стали реальностью, когда научились рассчитывать траектории космических кораблей и создавать специальные материалы, обладающие необходимыми свойствами: прочностью, лёгкостью, жаростойкостью и т. п.
В свою очередь, развитие астрономии способствует развитию физики. Вселенная представляет собой огромную физическую лабораторию. Вещество в ней находится в таких состояниях, которые нельзя получить в земных условиях. Например, температура внутри Солнца достигает 15 миллионов градусов. Получить и долго поддерживать такие температуры в земных условиях очень сложно, поскольку все металлы плавятся при гораздо меньших температурах. Самый тугоплавкий металл — вольфрам — плавится при температуре около 3400 градусов.
На основе наблюдений за явлениями, происходящими в космосе, были сделаны многие физические открытия. Так, газ гелий был открыт вначале на Солнце, а затем обнаружен в атмосфере Земли. Отсюда и его название: от слова «гелиос», что означает «солнечный».
Вопросы для самопроверки
1. Что изучает физика?
2. Приведите примеры физических явлений. Какие из них являются примерами механических, тепловых, электрических, магнитных, звуковых, световых явлений?
3. Приведите примеры физических тел. Назовите вещества, из которых они состоят.
4. Что изучает астрономия?
5. В чём проявляется связь между физикой и астрономией? Приведите примеры.
Связь физики с астрономией
Ведущим разделом современной астрономии является астрофизика. Астрофизика — это часть астрономии, которая изучает физические свойства небесных тел и процессы, протекающие в них и в космическом пространстве. При этом широко используются физические законы, поэтому она и получила такое название
Просмотр содержимого документа
«Связь физики с астрономией»
Связь физики с астрономией
Астрономия изучает движение звезд, планет, спутников, процессы, происходящие в атмосфере планет, в звездах и других небесных телах. Ведущим разделом современной астрономии является астрофизика.
Астрофизика — это часть астрономии, которая изучает физические свойства небесных тел и процессы, протекающие в них и в космическом пространстве. При этом широко используются физические законы, поэтому она и получила такое название. Так, с одной стороны, астрофизика занимается разработкой и применением физических методов исследования небесных тел, а с другой — на основании законов физики дает объяснение наблюдаемым во Вселенной явлениям и процессам. Кроме того, астрофизика является важным стимулом для развития современной теоретической физики. Например, вопрос об атомной энергии начал разрабатываться на основе данных об энергетической светимости Солнца и звезд.
Наконец, астрономические наблюдения позволяют изучать поведение вещества в таких условиях, которые искусственным путем в земных условиях неосуществимы. С этой точки зрения Вселенную можно рассматривать как неповторимую и неисчерпаемую природную физическую лабораторию. Например, большинство так называемых элементарных частиц было открыто в космосе. Средняя энергия частиц первичного космического излучения (на верхней границе атмосферы) составляет около 104 МэВ. Отдельные частицы обладают энергией порядка 1012 МэВ, т. е. космические лучи являются источником частиц сверхвысоких энергий, еще не достигнутых в лабораторных условиях. При взаимодействии таких частиц с веществом происходят принципиально новые ядерные реакции, изучение которых углубляет наши знания о свойствах ядер и элементарных частиц.
Космос — это природная физическая лаборатория. В ней интенсивно происходят явления, невозможные в земных условиях (например, нагревание тел до миллионов градусов). В космосе есть небесные тела, подобные Земле, какой она была миллионы лет тому назад или какой она станет в далеком будущем. Поэтому, изучая космос, человек углубляет свои знания о Земле, в том числе и о самом себе.
Земля — это мизерная часть Вселенной. На процессы, протекающие в земной атмосфере, и на жизнедеятельность всех организмов на Земле существенное влияние оказывают другие планеты, а также Солнце и Луна. Это тоже объекты изучения астрофизики — науки, раскрывающей двери перед человечеством в огромнейший, удиви тельный и прекрасный мир звезд, комет, туманностей и галактик, определившей пространственные и временные масштабы этого динамического и сложного мира.
Раздел астрономии, изучающий происхождение и развитие небесных тел, называется космогонией (от греч. kosmos — Вселенная и genos — происхождение). Космогония отвечает на вопросы, как и когда возникли Вселенная, галактики, звезды, планеты, какие на них происходят физические изменения и процессы.
Космология представляет собой учение о Вселенной в целом, о ее наиболее общих свойствах.
Значительно увеличила возможности изучения Земли и других небесных тел космонавтика (от греч. kosmos + pautike — корабле вождение) — наука о полетах в космическое пространство; совокупность отраслей науки и техники, которые проводят исследования и освоение космического пространства для нужд людей с использованием космических летательных аппаратов. Космонавтика решает следующие проблемы: расчет траектории, конструирование космических ракет, двигателей, бортовых систем управления, пусковых комплексов, систем связи и информации, создание бортовых систем обеспечения жизнедеятельности человеческого организма в условиях космического полета.
Основоположником космонавтики является выдающийся отечественный ученый Константин Эдуардович Циолковский (1857 – 1935), который теоретически обосновал возможность покорения космоса при помощи ракет. На практике это осуществил академик Сергей Павлович Королев (1906 –1966). Начало практической космонавтике было положено 4 октября 1957 г., когда в нашей стране был запущен первый искусственный спутник Земли. Вскоре после этого, в 1959 г., были запущены отечественные межпланетные автоматические станции для исследования Луны и получены фотографии ее обратной, не видимой с Земли, стороны. Cтарт «Востока»
12 апреля 1961 г. с первым в мире космонавтом Юрием Алексеевичем Гагариным (1934 – 1968) на борту открыл век космических полетов.
В 1969 г. американские астронавты Н. Армстронг и Э. Олдрин вышли из космического корабля на поверхность Луны. Космические исследования не ограничиваются изучением Земли и ее спутника Луны. Уже запущены автоматические межпланетные станции к Марсу, Венере, Юпитеру. Обсуждается идея совместной экспедиции отечественных и американских астронавтов к планете Марс.
Единство законов природы для земных и космических явлений тесно связывает физику и астрономию. Так, движение планет вокруг Солнца и падение тел на землю происходит под действием одной и той же силы — силы тяготения (гравитационной). Движение космических аппаратов осуществляется по законам, которые были открыты на Земле при изучении движения свободно падающих тел.
Развитие астрономии, в частности астрофизики и космонавтики, способствует развитию физики. Вселенная для ученых представляет собой огромную физическую лабораторию. Вещество в ней находится нередко в таких состояниях, которые нельзя получить в земных условиях. Многие физические открытия были сделаны при анализе явлений в космосе. Так, инертный газ гелий (от греч. helios — Солнце) был открыт при исследовании солнечного света, а затем его обнаружили в атмосфере Земли.
На протяжении тысячелетий астрономы получали только ту информацию о небесных явлениях, которую им приносил свет. Можно, сказать, что они изучали эти явления через узенькую щель в обширном спектре электромагнитных излучений. Три десятилетия тому назад благодаря развитию радиофизики возникла радиоастрономия, необычайно расширившая наши представления о Вселенной. Она помогла узнать о существовании многих космических объектов, о которых ранее не было известно. Дополнительным источником астрономических знаний стал участок электромагнитной шкалы, лежащий в диапазоне дециметровых и сантиметровых радиоволн.
Огромный поток научной информации приносят из космоса другие виды электромагнитного излучения, которые не достигают поверхности Земли, поглощаясь в ей атмосфере. С выходом человека в космическое пространство родились новые разделы астрономии: ультрафиолетовая и инфракрасная астрономия, рентгеновская и гамма-астрономия. Необычайно расширилась возможность исследования первичных космических частиц и излучений, приходящих из космического пространства. Объем научной информации, полученной астрономами за последние десятилетия, намного превысил объем информации, добытой за всю прошлую историю астрономии. Используемые при этом методы исследования и регистрирующая аппаратура заимствуются из арсенала современной физики; древняя астрономия превращается в молодую, бурно развивающуюся астрофизику.
Сейчас создаются основы нейтринной астрономии, которая будет доставлять ученым сведения о процессах, происходящих в недрах космических тел, например в глубинах нашего Солнца. Создание нейтринной астрономии стало возможным только благодаря успехам физики атомных ядер и элементарных частиц.
В течение многих веков астрономия была привязана к Земле. Так, движение Луны вокруг Земли и падение тел на Землю происходят по одной и той же причине – силе тяготения. Одинаковы процессы, происходящие, например, в недрах Солнца и в ускорителях частиц, установленных на Земле. Развитие физики приводит к новым открытиям и в астрономии. В частности, изучить строение и состав звезд стало возможным благодаря использованию специальных физических методов исследования. Космические полеты стали реальными, когда научились рассчитывать траектории космических кораблей и создавать специальные материалы, обладающие необходимыми свойствами: прочностью, легкостью, жаростойкостью и т. п. Р. Фейнман писал: «Астрономия старше физики. Фактически физика и возникла из неё, когда астрономия заметила поразительную простоту движения звёзд и планет, объяснение этой простоты и стало началом физики. Но самым выдающимся открытием астрономии было открытие того, что звёзды состоят из таких же атомов, что и Земля.
Так физика помогает астрономии. Распределение вещества внутри Солнца мы знаем куда лучше, чем его распределения внутри Земли, недра звёзд известны нам гораздо лучше, чем это можно было бы ожидать, ибо мы умеем рассчитывать, что произойдёт с атомами звёзд при многих обстоятельствах».
Физика и астрономия развиваются в тесном взаимодействии, взаимно обогащая друг друга. С точки зрения физики, главным вопросом на ближайшие десятилетия будет вопрос: приведёт ли астрономия к изменению фундаментальных физических представлений? Примерами таких изменений могли бы явиться изменения фундаментальных физических констант со временем или отклонений от известных физических законов при больших плотностях внутри или вблизи огромных масс. По мнению известного советского физика академика В. Л. Гинзбурга «…поиски новых фундаментальных идей и представлений в астрономии заслуживают… самого пристального внимания, но…предвидеть здесь ничего не дано».
Следует отметить, что современный этап в развитии астрономии во многом благодаря физике, характеризуется бурным её расцветом. Астрономия, например, стала всеволновой – ныне исследования ведутся не только в узком оптическом диапазоне волн, а охватывают широкий спектр от гамма- и рентгеновских лучей до радиоволн.
Физика изучает общие законы природы, и поэтому многие естественные науки тесно связаны с физикой. В частности, существуют такие смежные разделы этой науки, как биофизика, геофизика, физическая химия и другие. Но особенно тесно связана с физикой астрономия.
Астрономия изучает движение звезд, планет, спутников, процессы, происходящие в атмосфере планет, в звездах и других небесных телах. Ведущим разделом современной астрономии является астрофизика.
Астрофизика — это часть астрономии, которая изучает физические свойства небесных тел и процессы, протекающие в них и в космическом пространстве. При этом широко используются физические законы, поэтому она и получила такое название. Так, с одной стороны, астрофизика занимается разработкой и применением физических методов исследования небесных тел, а с другой — на основании законов физики дает объяснение наблюдаемым во Вселенной явлениям и процессам. Кроме того, астрофизика является важным стимулом для развития современной теоретической физики. Например, вопрос об атомной энергии начал разрабатываться на основе данных об энергетической светимости Солнца и звезд.
Наконец, астрономические наблюдения позволяют изучать поведение вещества в таких условиях, которые искусственным путем в земных условиях неосуществимы. С этой точки зрения Вселенную можно рассматривать как неповторимую и неисчерпаемую природную физическую лабораторию. Например, большинство так называемых элементарных частиц было открыто в космосе. Средняя энергия частиц первичного космического излучения (на верхней границе атмосферы) составляет около 104 МэВ. Отдельные частицы обладают энергией порядка 1012 МэВ, т. е. космические лучи являются источником частиц сверхвысоких энергий, еще не достигнутых в лабораторных условиях. При взаимодействии таких частиц с веществом происходят принципиально новые ядерные реакции, изучение которых углубляет наши знания о свойствах ядер и элементарных частиц.
Космос — это природная физическая лаборатория. В ней интенсивно происходят явления, невозможные в земных условиях (например, нагревание тел до миллионов градусов). В космосе есть небесные тела, подобные Земле, какой она была миллионы лет тому назад или какой она станет в далеком будущем. Поэтому, изучая космос, человек углубляет свои знания о Земле, в том числе и о самом себе.
Земля — это мизерная часть Вселенной. На процессы, протекающие в земной атмосфере, и на жизнедеятельность всех организмов на Земле существенное влияние оказывают другие планеты, а также Солнце и Луна. Это тоже объекты изучения астрофизики — науки, раскрывающей двери перед человечеством в огромнейший, удиви тельный и прекрасный мир звезд, комет, туманностей и галактик, определившей пространственные и временные масштабы этого динамического и сложного мира.
Раздел астрономии, изучающий происхождение и развитие небесных тел, называется космогонией (от греч. kosmos — Вселенная и genos — происхождение). Космогония отвечает на вопросы, как и когда возникли Вселенная, галактики, звезды, планеты, какие на них происходят физические изменения и процессы.
Космология представляет собой учение о Вселенной в целом, о ее наиболее общих свойствах.
Значительно увеличила возможности изучения Земли и других небесных тел космонавтика (от греч. kosmos + pautike — корабле вождение) — наука о полетах в космическое пространство; совокупность отраслей науки и техники, которые проводят исследования и освоение космического пространства для нужд людей с использованием космических летательных аппаратов. Космонавтика решает следующие проблемы: расчет траектории, конструирование космических ракет, двигателей, бортовых систем управления, пусковых комплексов, систем связи и информации, создание бортовых систем обеспечения жизнедеятельности человеческого организма в условиях космического полета.
Основоположником космонавтики является выдающийся отечественный ученый Константин Эдуардович Циолковский (1857 – 1935), который теоретически обосновал возможность покорения космоса при помощи ракет. На практике это осуществил академик Сергей Павлович Королев (1906 –1966). Начало практической космонавтике было положено 4 октября 1957 г., когда в нашей стране был запущен первый искусственный спутник Земли. Вскоре после этого, в 1959 г., были запущены отечественные межпланетные автоматические станции для исследования Луны и получены фотографии ее обратной, не видимой с Земли, стороны.
Cтарт «Востока»12 апреля 1961 г. с первым в мире космонавтом Юрием Алексеевичем Гагариным (1934 – 1968) на борту открыл век космических полетов.
В 1969 г. американские астронавты Н. Армстронг и Э. Олдрин вышли из космического корабля на поверхность Луны. Космические исследования не ограничиваются изучением Земли и ее спутника Луны. Уже запущены автоматические межпланетные станции к Марсу, Венере, Юпитеру. Обсуждается идея совместной экспедиции отечественных и американских астронавтов к планете Марс.
Единство законов природы для земных и космических явлений тесно связывает физику и астрономию. Так, движение планет вокруг Солнца и падение тел на землю происходит под действием одной и той же силы — силы тяготения (гравитационной). Движение космических аппаратов осуществляется по законам, которые были открыты на Земле при изучении движения свободно падающих тел.
Развитие астрономии, в частности астрофизики и космонавтики, способствует развитию физики. Вселенная для ученых представляет собой огромную физическую лабораторию. Вещество в ней находится нередко в таких состояниях, которые нельзя получить в земных условиях. Многие физические открытия были сделаны при анализе явлений в космосе. Так, инертный газ гелий (от греч. helios — Солнце) был открыт при исследовании солнечного света, а затем его обнаружили в атмосфере Земли.
На протяжении тысячелетий астрономы получали только ту информацию о небесных явлениях, которую им приносил свет. Можно, сказать, что они изучали эти явления через узенькую щель в обширном спектре электромагнитных излучений. Три десятилетия тому назад благодаря развитию радиофизики возникла радиоастрономия, необычайно расширившая наши представления о Вселенной. Она помогла узнать о существовании многих космических объектов, о которых ранее не было известно. Дополнительным источником астрономических знаний стал участок электромагнитной шкалы, лежащий в диапазоне дециметровых и сантиметровых радиоволн.
Огромный поток научной информации приносят из космоса другие виды электромагнитного излучения, которые не достигают поверхности Земли, поглощаясь в её атмосфере. С выходом человека в космическое пространство родились новые разделы астрономии: ультрафиолетовая и инфракрасная астрономия, рентгеновская и гамма-астрономия. Необычайно расширилась возможность исследования первичных космических частиц и излучений, приходящих из космического пространства. Объем научной информации, полученной астрономами за последние десятилетия, намного превысил объем информации, добытой за всю прошлую историю астрономии. Используемые при этом методы исследования и регистрирующая аппаратура заимствуются из арсенала современной физики; древняя астрономия превращается в молодую, бурно развивающуюся астрофизику.
Сейчас создаются основы нейтринной астрономии, которая будет доставлять ученым сведения о процессах, происходящих в недрах космических тел, например в глубинах нашего Солнца. Создание нейтринной астрономии стало возможным только благодаря успехам физики атомных ядер и элементарных частиц.
Физика и астрономия
Разделы: Физика