Что общего в электронных конфигурациях фтора и хлора чем они различаются

VII группа главная подгруппа периодический таблицы Менделеева (галогены)

К элементам главной подгруппы VII группы периодической таблицы Менделеева относятся элементы с общим названием «галогены»:

Общая характеристика галогенов

От F к At (сверху вниз в периодической таблице)

Увеличивается

Уменьшается

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

Электронные конфигурации у данных элементов схожи, они содержат 7 электронов на внешнем слое ns 2 np 5 :

Br – 3d 10 4s 2 4p 5 ;

I — 4d 10 5s 2 5p 5 ;

At – 4f 14 5d 10 6s 2 6p 5

Электронная конфигурация фтора и хлора

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

Электронная конфигурация брома и йода

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

Нахождение в природе галогенов

Галогены являются химически активными веществами, в связи с чем, в природе они встречаются только в виде соединений. Их распространённость в земной коре снижается при увеличении атомного радиуса (от фтора к иоду). Например, содержание астата в земной коре исчисляется граммами.

Наиболее распространённые соединения фтора — флюорит CaF2, криолит Na3AlF6 и др., хлора — каменная соль (галит) NaCl, сильвин KCl и сильвинит KCl⋅NaCl.

Бром и иод не образуют индивидуальных минералов, но их соединения содержатся в морской воде и могут накапливаться водорослями.

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

Способы получения фтора

Фтор получают методом электролиза расплава гидрофторида калия (смеси HF и KF):

Физические свойства фтора

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

Фтор при обычной температуре — зеленовато-жёлтый ядовитый газ, с резким запахом, очень реакционноспособный, хорошо растворим в жидких водороде и кислороде.

Химические свойства фтора

Фтор является самым сильным окислителем из всех простых веществ. Непосредственно он не взаимодействует только с N2, Не, Ne, Аr, а при нормальных условиях также и с O2.

Взаимодействие с простыми веществами

С кислородом

С галогенами (Cl, Br, I)

Фтор вступает в реакции с другими галогенами:

Например, Cl2 + F2 → 2ClF

С водородом

Взаимодействует с водородом со взрывом даже в темноте:

С серой

Реакция с серой протекает легко даже при сильном охлажлении:

С углеродом

Реакция окисления порошкообразного углерода сопровождается самовоспламенением последнего:

С азотом

При нагревании фтор реагирует и с азотом:

С фосфором

Фтор взаимодействует с P энергично (со взрывом) на свету и в темноте, даже при охлаждении жидким N2:

С кремнием

Взаимодействует с кремнием с образованием фторида кремния

C инертными газами

Окисляет ксенон, образуя фторид ксенона:

С металлами

При взаимодействии с металлами образуются фториды:

Взаимодействие со сложными веществами

С водой

Фтор активно разлагает воду с образованием таких соединений, как фториды кислорода OF2, O2F2; пероксид водорода Н2O2; кислород, озон, фтороводород:

С кислотами

С щелочами и аммиаком

Фтор окисляет щелочи:

Реагирует с газообразным аммиаком:

С солями

Не взаимодействует

Взаимодействие фтора с водными растворами солей невозможны, т.к. он ступает в реакцию с водой.

С оксидами

Реагирует с оксидом кремния, который загорается в атмосфере F2:

Способы получения хлора

Промышленный способ

Электролиз расплавов или водных растворов хлоридов, чаще – NaCl.

A(+): 2Cl − ̶ 2e → Cl2 0

2Na + + 2Cl − → 2Na º + Cl2º

Таким образом, получаем:

A(+): 2Cl − ̶ 2e → Cl2 0

Таким образом, получаем:

Лабораторный способ

Окисление концентрированной HCI сильными окислителями:

Физические свойства хлора

Хлор Cl2 при обычной температуре – тяжелый, желто-зеленый газ с резким удушающим запахом.

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

Cl2 в 2,5 раза тяжелее воздуха, малорастворим в воде (

6,5 г/л); хорошо растворим в неполярных органических растворителях. В свободном состоянии встречается только в вулканических газах.

Химические свойства хлора

Хлор — очень сильный окислитель. Окисляет металлы, неметаллы и сложные вещества, с образованием в устойчивые хлорид-ионы:

Взаимодействие с простыми веществами

С кислородом

Непосредственно не взаимодействует

С галогенами

Хлор взаимодействует с другими галогенами – более активные галогены окисляют менее активные. В зависимости от условий могут получиться различные соединения:

С водородом

Реакция с водородом при обычных условиях не протекает. Однако, при нагревании, УФ — освещении или электрическом разряде реакция протекает со взрывом:

Непосредственно не взаимодействует

С фосфором

Непосредственно не взаимодействует

С кремнием

2Cl2 + Si = SiCl4 (при нагревании)

С металлами

Взаимодействие со сложными веществами

Окисляет сложные вещества:

2Cl2 + 2H2O → 4HCl + O2 (на свету или кипячении)

С водой

При растворении хлора в воде вступает в реакцию диспропорционирования (самоокисления-самовосстановления), с образованием хлорноватистой кислоты:

С водными растворами щелочей

При взаимодействии с щелочами хлор диспропорционирует с образованием солей, состав которых зависит от условий проведения реакции:

Эти реакции имеют важное практическое значение, приводят к получению гипохлоритов — КClO3 и Са(ClO)2; хлората калия (бертолетова соль) — КClO3

С солями

Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов:

HC ≡ CH + 2Cl2 → Cl2HC — CHCl2 1,1,2,2-тетрахлорэтан

Способы получения брома

Промышленный способ

Бром втесняют при помощи хлора:

Далее бром отгоняют из раствора водяным паром или воздухом.

Лабораторный способ

Физические свойства брома

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

В обычных условиях бром – красно-бурая жидкость с резким зловонным запахом. При Т=-7,2°C жидкий бром застывает, образуя красно-коричневые игольчатые кристаллы.

Пары брома жёлто-бурого цвета, Ткип = 58,78°C.

В воде бром растворяется лучше других галогенов (3,58 г брома в 100 г H2O при 20°C). Хорошо растворим во многих органических растворителях.

Бромная вода имеет желто-бурую окраску, быстро исчезающую, при взаимодействии растворенного Br2 с каким-либо веществом. «Обесцвечивание бромной воды» — широко используется в качестве теста на обнаружение в растворе многих неорганических и органических веществ.

Химические свойства брома

Химические свойства брома сходны с хлором. Различаются только условия протекания реакций.

Взаимодействие с простыми веществами

С металлами

Жидкий бром сильный окислитель. Например, железо и алюминий самовозгораются при соприкосновении с бромом даже при обычной температуре.

С водородом

Взаимодействие брома с водородом происходит лишь при повышенной температуре. Реакция эндотермической и обратимой.

С азотом, углеродом, кислородом и благородными газами

Непосредственно не взаимодействует

С галогенами

Бром окисляется более активными галогенами:

Взаимодействие со сложными веществами

Обесцвечивание бромной воды

Обесцвечивание бромной воды – качественная реакция на многие неорганические и органические соединения:

Способы получения йода

Промышленный способ

Лабораторный способ

2 FеC3 + 2 НI = 2 FeCl2 + I2 + 2 НСl

Физические свойства йода

Свободный йод I2 при обычной температуре — черно-серое с фиолетовым оттенком кристаллическое вещество с металлическим блеском. Легко возгоняется. Пары йода имеют своеобразный запах и очень ядовиты.

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

Среди галогенов I2 обладает самой меньшей растворимостью в воде, однако он хорошо растворим в спирте и других органических растворителях.

Химические свойства йода

Химическая активность йода – наименьшая по сравнению с другими галогенами. Со многими элементами йод непосредственно не взаимодействует, а с некоторыми реагирует только при повышенных температурах (водород, кремний, многие металлы).

Йод-крахмальная реакция

Обнаружить I2 даже в самой минимальной концентрации можно с помощью раствора крахмала, который при наличии I2 окрашивается в грязно-синий цвет.

Йод-крахмальная реакция используется при качественном обнаружении йода, а также его количественного анализа

Взаимодействие с простыми веществами

С водородом

Реакция обратима и возможна только при высокой температуре:

С металлами

При добавлении капли воды в качестве катализатора цинк, железо и алюминий в смеси с порошком йода горят, образуя йодиды:

С азотом, углеродом, кислородом

Непосредственно не взаимодействует

Взаимодействие со сложными веществами

С водой

Частично реагирует с водой (реакция диспропорционирования):

С щелочью

Диспропорционирует в водном растворе щелочи:

C аммиаком

C аммиаком образует аддукт нитрид трииодида:

С иодидами щелочных металлов

Молекулы галогенов присоединяются к иодидам щелочных металлов с образованием полииодидов (периодидов):

С окислителями

Йод проявляет восстановительные свойства в реакциях с сильными окислителями:

C восстановителями

Иод менее сильный окислитель, чем фтор, хлор и бром. Восстановители, такие как H2S, Na2S2O3 и др. восстанавливают его до иона I − :

Источник

Сравнительная характеристика фтора и хлора.

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаютсяЧто общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

Входящие в главную подгруппу VII группы элементы фтор, хлор, бром, йод и астат называются галогенами. Это название, которое буквально означает «солерождающие», элементы получили за способность взаимодействовать с металлами с образованием типичных солей, например хлорида натрия NaCl.

На внешней электронной оболочке атомов галогенов содержатся семь электронов — два на s- и пять на р-орбиталях (ns2np5). Галогены обладают значительным сродством к электрону. их атомы легко присоединяют электрон, образуя однозарядные отрицательные ионы, обладающие электронной структурой соответствующего благородного газа (ns2np6). Склонность к присоединению электронов характеризует галогены как типичные неметаллы. Аналогичное строение наружной электронной оболочки обусловливает большое сходство галогенов друг с другом, проявляющееся как в их химических свойствах, так и в типах и свойствах образуемых ими соединений. Но, как показывает сопоставление свойств галогенов, между ними имеются и существенные различия.

С повышением порядкового номера элементов в ряду F — At увеличиваются радиусы атомов, уменьшается электроотрицательность, ослабевают неметаллические свойства и окислительная способность элементов.

В отличие от других галогенов, фтор в своих соединениях всегда находится в степени окисления —1, поскольку среди всех элементов он обладает самой высокой электроотрицательностью. Остальные галогены проявляют различные степени окисления от —1 до +7.

За исключением некоторых оксидов, которые будут рассмотрены ниже, все соединения галогенов соответствуют нечетным степеням окисления. Такая закономерность обусловлена возможностью последовательного возбуждения спаренных электронов в атомах Cl, Вг, I и At на d-подуровень, что приводит к увеличению числа электронов, принимающих участие в образовании ковалентных связей, до 3, 5 или 7.

Молекулы простых веществ, образуемых атомами галогенов, двухатомны. С увеличением в ряду F, Cl, Br, I, At радиуса атомов возрастает поляризуемость молекул. В результате усиливается межмолекулярное дисперсионное взаимодействие, что обусловливает возрастание температур плавления и кипения галогенов.

В ряду Сl2 — Вr2 —I2 прочность связи между атомами в молекуле постепенно уменьшается. Уменьшение прочности связи в молекулах галогенов проявляется в падении их устойчивости к нагреванию. Фтор выпадает из общей закономерности: прочность связи между атомами в его молекуле меньше, а степень термической диссоциации молекул выше, чем у хлора. Такие аномальные свойства фтора можно объяснить отсутствием d-подоболочки во внешней электронной оболочке его атома. В молекуле хлора и других галогенов есть свободные d-орбитали, и поэтому между атомами имеет место дополнительное донорно-акцепторное взаимодействие, упрочняющее связь.

При образовании молекулы F2 понижение энергии электронов достигается за счет взаимодействия 2р-АО с неспаренными электронами атомов фтора (система 1 +1). Остальные p-АО неподеленных электронных пар можно считать не учавствующими в образовании химической связи. Химическая связь в молекуле Сl2, кроме аналогичного взаимодействия валентных Зр-АО атомов хлора (система 1+1), также образуется за счет взаимодействий Зр-АО неподеленной электронной пары одного атома хлора с вакантной 3d-АО другого (системы 2 +0). В результате порядок связи в молекуле С12 больше, чем в молекуле F2,а химическая связь — прочнее.

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаютсяЧто общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

Галогены, вследствие их большой химической активности, находятся в природе исключительно в связанном состоянии — главным образом в виде солей галогеноводородных кислот.

Фтор встречается в природе чаще всего в виде минерала плавикового шпата СаF2.

Важнейшим природным соединением хлора является хлорид натрия (поваренная соль) NaCl, который служит основным сырьем для получения других соединений хлора.

Все галогены обладают очень резким запахом. Вдыхание их даже в небольших количествах вызывает сильное раздражение дыхательных путей и воспаление слизистых оболочек. Более значительные количества галогенов могут вызвать тяжелое отравление.

Галогены сравнительно мало растворимы в воде. Один объем воды растворяет при комнатной температуре около 2,5 объемов хлора. Раствор этот называется хлорной водой.

Фторне может быть растворен в воде, так как энергично разлагает ее:

Фтор и хлор со многими органическими растворителями интенсивно реагируют: сероуглероде, этиловом спирте, диэтиловом эфире, хлороформе, бензоле.

Химические свойства галогенов.

Свободные галогены проявляют чрезвычайно высокую химическую активность. Они вступают во взаимодействие почти со всеми простыми веществами. Особенно быстро и с выделением большого количества теплоты протекают реакции соединения галогенов с металлами.

Медь, олово и многие другие металлы сгорают в хлоре, образуя соответствующие соли. Во всех этих случаях атомы металла отдают электроны, т. е. окисляются, а атомы галогенов присоединяют электроны, т. е. восстанавливаются. Эта способность присоединять электроны, резко выраженная у атомов галогенов, является их характерным химическим свойством. Следовательно, галогены — очень энергичные окислители.

Окислительные свойства галогенов проявляются также и при взаимодействии их со сложными веществами. Приведем несколько примеров.

1. При пропускании хлора через раствор хлорида железа (II) последний окисляется в хлорид железа (III), вследствие чего раствор из бледно-зеленого становится желтым:

Химическая активность фтора исключительно высока. Щелочные металлы, свинец, железо загораются в атмосфере фтора при комнатной температуре. На некоторые металлы (Al, Fe, Ni. Cu, Zn) фтор на холоде не действует, так как на их поверхности образуется защитный слой фторида. Однако при нагревании фтор реагирует со всеми металлами, в том числе с золотом и платиной.

Со многими неметаллами (водород, йод, бром, сера, фосфор, мышьяк, сурьма, углерод, кремний, бор) фтор взаимодействует на холоде: реакции протекают со взрывом или с образованием пламени:

При нагревании с фтором соединяются хлор, криптон и ксенон, например: Хе(г) + F2tr) = XeF2(r)

Непосредственно фтор не реагирует только с кислородом, азотом и углеродом (в виде алмаза).

Очень энергично протекает взаимодействие фтора со сложными веществами. В его атмосфере горят такие устойчивые вещества, как стекло (в виде ваты) и водяной пар:

Свободный хлор тоже проявляет очень высокую химическую активность, хотя и меньшую, чем фтор. Он непосредственно взаимодействует со всеми просты-ми веществами, за исключением кислорода, азота и благородных газов. Такие неметаллы, как фосфор, мышьяк, сурьма и кремний, уже при низкой темпера-туре реагируют с хлором; при этом выделяется большое количество теплоты. Энергично протекает взаимодействие хлора с активными металлами натрием, калием, магнием и др. При комнатной температуре без освещения хлор практически не взаимодействует с водородом, но при нагревании или на ярком солнечном свету реакция протекает по цепному механизму со взрывом.

Фтор, вследствие своей высокой электроотрицательности, может быть выделен из соединений только путем электролиза (расплав состава KF+2HF подвергают электролизу. Электролиз ведут в никелевом сосуде, который является катодом, а анодом служит уголь).

Хлор получают в настоящее время в больших количествах путем электролиза водных растворов хлоридов натрия или калия.

В лабораториях хлор получают действием различных окислителей на соляную кислоту.

Соединения галогенов с водородом.

Химическая связь в молекулах галогеноводородов — полярная ковалентная: общая электронная пара смещена к атому галогена как более электроотрицательному. Прочность химической связи в молекулах галогеноводородов закономерно падает в ряду HF — НС1 — НВг — HI: это проявляется в изменении энтальпии диссоциации молекул на атомы.

При переходе, например, от HF к HI уменьшается степень перекрывания электронных облаков атомов водорода и галогена, а область перекрывания располагается на большем расстоянии от ядра атома галогена и сильнее экранируется возросшим числом промежуточных электронных слоев. Кроме того, в ряду F — Cl — Br — I электроотрицательность атома галогена уменьшается. Поэтому в молекуле HF электронное облако атома водорода смещается в сторону атома галогена в наибольшей степени, а в молекулах НС1, НВг и HI — все меньше и меньше. Это также приводит к уменьшению перекрывания взаимодействующих электронных облаков и, тем самым, к ослаблению связи между атомами.

Галогеноводороды очень хорошо растворимы в воде. При 0 °С один объем воды растворяет около 500 объемов НС1, 600 объемов НВг и около 425 объемов HI (при 10 °С); фтороводород смешивается с водой в любых соотношениях.

Растворение галогеноводородов сопровождается их диссоциацией по кислот-ному типу, причем только фтороводород диссоциирован сравнительно слабо, остальные же принадлежат к числу наиболее сильных кислот.

Отрицательные ионы галогеноводородов, за исключением фгорид-иона, обладают восстановительными свойствами, возрастающими по ряду Cl-, Br_, I-.

Хлорид-ион окисляется фтором, перманганатом калия, диоксидом марганца и другими сильными окислителями, например:

Раствор фтороводорода в воде называется плавиковой кислотой. Это название происходит от плавикового шпата, из которого обычно получают фтороводород действием концентрированной серной кислоты:

Фтороводород реагирует с большинством металлов. Однако во многих случаях образующаяся соль малорастворима, вследствие чего на поверхности металла возникает защитная пленка.

Замечательным свойством фтороводорода и плавиковой кислоты является их способность взаимодействовать с диоксидом кремния Si02, входящим в состав стекла; в результате образуется газообразный фторид кремния SiF4:

Соляная кислота получается растворением в воде хлороводорода. В настоящее время основным способом промышленного получения хлороводорода является процесс синтеза его из водорода и хлора:

Большие количества НСl получают также в качестве побочного продукта хлорирования органических соединений согласно схеме

Кислородсодержащие соединения галогенов

Галогены образуют ряд соединений с кислородом. Однако все эти соединения неустойчивы, не получаются при непосредственном взаимодействии галогенов с кислородом, а только косвенным путем. Такие особенности кислородных соединений галогенов согласуются с тем, что почти все они характеризуются положительными значениями стандартной энергии Гиббса образования.

Фторид кислорода OF2 можно получить пропусканием фтора в охлажденный 2%-ный раствор NaOH. Реакция идет согласно уравнению:

Как уже указывалось, кислородные соединения хлора могут быть получены только косвенными методами. Рассмотрение путей их образования начнем с прцесса гидролиза хлора, т. е. с обратимой реакции между хлором и водой

в результате которой образуются соляная кислота и хлорноватистая кислота НОС1.

Билет 16

Химия водорода

Водород имеет три изотопа: протий Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются, дейтерий Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются, или D, и тритий Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются, или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий — радиоактивен.

Молекула водорода состоит из двух атомов.

Водород в свободном состоянии встречается на Земле лишь в незначительных количествах. Иногда он выделяется вместе с другими газами при вулканических извержениях, а также из буровых скважин при добывании нефти. Но в виде соединений водород весьма распространен.

В промышленности водород получают главным образом из природного газа. Этот газ, состоящий в основном из метана, смешивают с водяным паром и с кислородом. При нагревании смеси газов до 800—900° С в присутствии катализатора происходит реакция, которую схематически можно изобразить уравнением:

В лабораториях водород получают большей частью электролизом водных растворов NaOH или КОН концентрация этих растворов выбирается такой, которая отвечает их максимальной электрической проводимости. Электроды обычно изготовляют из листового никеля. Этот металл не подвергается коррозии в растворах щелочей, даже будучи анодом. В случае надобности получающийся водород очищают от паров воды и от следов кислорода. Из других лабораторных методов наиболее распространен метод выделения водорода из растворов серной или соляной кислот действием на них цинка.

Свойства и применение водорода.

Водород — бесцветный газ, не имеющий запаха. В воде водород растворим очень мало, но в некоторых металлах, например в никеле, палладии, платине, растворяется в значительных количествах.

С растворимостью водорода в металлах связана его способность диффундировать через металлы. Кроме того, будучи самым легким газом, водород обладает наибольшей скоростью диффузии: его молекулы быстрее молекул всех других газов распространяются в среде другого вещества и проходят через разного рода перегородки. Особенно велика его способность к диффузии при повышенном давлении и высоких температурах.

Химические свойства водорода в значительной степени определяются способностью его атома отдавать единственный имеющийся у него электрон и превращаться в положительно заряженный ион. При этом проявляется особенность атома водорода, отличающая его от атомов всех других элементов: отсутствие промежуточных электронов между валентным электроном и ядром.

Ион водорода, образующийся в результате потери атомом водорода электрона, представляет собой протон, размер которого на несколько порядков меньше размера катионов всех других элементов. Поэтому поляризующее действие протона очень велико, вследствие чего водород не способен образовывать ионных соединений, в которых он выступал бы в качестве катиона. Его соединения даже с наиболее активными неметаллами, например с фтором, представляют собой вещества с полярной ковалентной связью.

Атом водорода способен не только отдавать, но и присоединять один электрон. При этом образуется отрицательно заряженный ион водорода с электронной оболочкой атома гелия. В виде таких ионов водород находится в соединениях с некоторыми активными металлами. Таким образом, водород имеет двойственную химическую природу проявляя как окислительную, так и восстановительную способность. В большинстве реакций он выступает в качестве восстановителя, образуя соединения, в которых степень его окисления равна +1. Но в реакциях с активными металлами он выступает в качестве окислителя: степень окисления его в соединениях с металлами равна —1.

Таким образом, отдавая один электрон, водород проявляет сходство с металлами первой группы периодической системы, а присоединяя электрон. — с неметаллами седьмой группы. Поэтому водород в периодической системе обычно помещают либо в первой группе и в то же время в скобках в седьмой, либо в седьмой группе и в скобках в первой.

Соединения водорода с металлами называются гидридами.

В результате реакции образуются водород и основание. Например, гидрид кальция реагирует с водой согласно уравнению:

Если к струе водорода, выходящей из какого-нибудь узкого отверстия, поднести зажженную спичку, то водород загорается и горит несветящимся пламенем, образуя воду:

При низких температурах водород с кислородом практически не взаимодействуют. Если смешать оба газа и оставить смесь, то и через несколько лет в ней нельзя обнаружить даже признаков воды.

Малая скорость взаимодействия водорода с кислородом при низких температурах обусловлена высокой энергией активации этой реакции. Молекулы водорода и кислорода очень прочны; подавляющее большинство столкновений между ними при комнатной температуре оказываются неэффективными. Лишь при повышенных температурах, когда кинетическая энергия сталкивающихся молекул делается большой, некоторые соударения молекул становятся эффективными и приводят к образованию активных центров.

При высокой температуре водород может отнимать кислород от многих соединений, в том числе от большинства оксидов металлов. Например, если пропускать водород над накаленным оксидом меди, то происходит восстановление меди:

Атомарный водород: При высокой температуре молекулы водорода диссоциируют на атомы:

Осуществить эту реакцию можно, например, раскаляя током вольфрамовую проволочку в атмосфере сильно разреженного водорода. Реакция обратима, и чем выше температура, тем сильнее равновесие сдвинуто вправо.

Атомарный водород получается также при действии тихого электрического разряда на молекулярный водород, находящийся под давлением около 70 Па. Образующиеся при этих условиях атомы водорода не сразу соединяются в молекулы, что дает возможность изучить их свойства.

При разложении водорода на атомы поглощается большое количество теплоты:

Отсюда понятно, что атомы водорода должны быть гораздо активнее его молекул. Чтобы молекулярный водород вступил в какую-либо реакцию, молекулы должны распасться на атомы, для чего необходимо затратить большое количество энергии. При реакциях же атомарного водорода такой затраты энергии не требуется.

Действительно, атомарный водород уже при комнатной температуре восстанавливает многие оксиды металлов, непосредственно соединяется с серой, азотом и фосфором; с кислородом он образует пероксид водорода.

Пероксид (перекись) водорода представляет собой бесцветную сиропообразную жидкость. Это очень непрочное вещество, способное разлагаться со взрывом на воду и кислород, причем выделяется большое количество теплоты:

Водные растворы пероксида водорода более устойчивы; в прохладном месте они могут сохраняться довольно долго.

Пероксид водорода образуется в качестве промежуточного продукта при горении водорода, но ввиду высокой температуры водородного пламени тотчас же разлагается на воду и кислород. Однако если направить водородное пламя на кусок льда, то в образующейся воде можно обнаружить следы пероксида водорода.

Пероксид водорода получается также при действии атомарного водорода на кислород.

В пероксиде водорода атомы водорода ковалентно связаны с атомами кислорода, между которыми также осуществляется простая связь. Строение пероксида водорода можно выразить следующей структурной формулой: Н — О-О — Н.

Молекулы Н202 обладают значительной полярностью, что является следствием их пространственной структуры.

Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть фото Что общего в электронных конфигурациях фтора и хлора чем они различаются. Смотреть картинку Что общего в электронных конфигурациях фтора и хлора чем они различаются. Картинка про Что общего в электронных конфигурациях фтора и хлора чем они различаются. Фото Что общего в электронных конфигурациях фтора и хлора чем они различаются

С некоторыми основаниями пероксид водорода реагирует непосредственно, образуя соли. Так, при действии пероксида водорода на водный раствор гидроксида бария выпадает осадок бариевой соли пероксида водорода:

В качестве примеров реакций, в которых Н202 служит окислителем, можно привести окисление нитрита калия

и выделение йода из йодида калия:

Как пример восстановительной способности пероксида водорода укажем на реакции взаимодействия Н202 с оксидом серебра (I)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *