Что означает мотор автомат
Автоматы защиты двигателей
2021-02-13 Промышленное
12 комментариев
Автоматы защиты двигателей, или по другому мотор-автоматы, предназначены в первую очередь для защиты электродвигателей от перегрева и последствий короткого замыкания, а также могут использоваться в качестве основного или аварийного выключателя. То есть по сути они совмещают в одном корпусе два устройства — автоматический выключатель и тепловое реле.
Ранее, до того как стали повсеместно применяться мотор-автоматы, для защиты двигателей использовались тепловые реле в паре с контактором.
По такой схеме тепловое реле, при превышении двигателем потребляемого тока нагрузки, размыкает цепь катушки контактора, отключая его силовые контакты и таким образом защищая двигатель. Схема рабочая, проверенная, но не лишенная недостатков. В первую очередь к ним стоит отнести неспособность тепловых реле защитить от КЗ, поэтому необходимо дополнительно использовать автоматические выключатели. Да и габариты такой конструкции из контактора и теплового реле получаются достаточно большими.
Поэтому с появлением автоматов защиты двигателей, тепловые реле стали отходить на второй план и на данный момент, их применение довольно ограничено.
Стоит сразу сказать, что по своим характеристикам, автоматы защиты двигателей несколько отличаются от обычных автоматических выключателей. В первую очередь тем, что:
Принцип работы автомата защиты двигателей
Электромагнитный расцепитель выполнен в виде катушки соленоида, внутри которой расположен стальной сердечник с возвратной пружиной. Под действием электрического тока короткого замыкания сердечник втягивается в катушку, преодолевая сопротивление пружины и воздействует на механизм расцепления, в следствии чего контакты размыкаются.
Принцип работы тепловых расцепителей автомата такой же, как у тепловых реле. Имеется биметаллическая пластина, состоящая из двух пластин, которые сделаны из материалов с разными коэффициентами теплового расширения. Под воздействием высокой температуры, возникающей в следствии прохождения тока, превышающего номинальный, пластина начинает изгибаться, давить на механизм расцепителя и под действием пружины происходит размыкание контактов, тем самым обесточивается цепь.
Сразу после срабатывания защиты, вновь включить автомат не получится, таким образом обеспечивается выдержка времени для охлаждения двигателя после его аварийного останова.
Уставка срабатывания задается при помощи поворотного регулятора на лицевой части.
Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.
Схема подключения автомата защиты двигателей
Автоматический выключатель следует устанавливать перед другими аппаратами в цепи. Это позволяет защитить не только сам двигатель, но и например, контактор от повреждения в случае перегрузки или короткого замыкания. Также, как и в случае автоматических выключателей, автомат защиты двигателей можно дополнительно оснастить вспомогательными контактами (контакты состояния, аварийный контакт), которые можно задействовать, например, для индикации состояния.
В случае подключения трехфазной нагрузки схема подключения стандартная и не вызывает вопросов, а вот в случае однофазной нагрузки (стоит отметить, что все мотор автоматы выпускаются только в трехполюсном исполнении), иногда встречаюсь с подключением, когда просто задействуют один силовой контакт автомата защиты. Но такое подключение неправильное, необходимо, как на рисунке ниже слева, задействовать все три контакта.
Кстати, обратите внимание, что автомат защиты двигателя имеет свое условно-графическое обозначение в схемах, отличающееся от обозначения обычных автоматических выключателей. А вот буквенное обозначение у них идентично.
Основные функции защиты
Выбор автомата защиты
В случае прямого запуска, когда двигатель включается в работу с помощью мотор-автомата и контактора, необходимо в первую очередь знать его мощность. Эту информацию можно найти либо в технических характеристиках на двигатель, либо в паспортных данных, которые указаны на шильде.
Следующим шагом подбираем автомат, исходя из номинальной мощности двигателя. У различных фирм-производителей можно найти таблицы характеристик, где указаны номинальный рабочий ток и диапазон регулировки автоматов защиты в зависимости от мощности двигателя. В частности, на рисунке ниже приведена таблица соответствия автоматов защиты двигателей компании Allen Bradley.
И последним этапом выставляем необходимый ток отключения при помощи регулятора диапазона. Обычно указывается, что он должен быть больше или равен номинальному току электродвигателя. Но желательно, чтобы ток срабатывания защиты превышал на 10-20% номинальный ток двигателя.
То есть в случае, если номинальный ток двигателя составляет например 10 А, умножаем это значение на 1,1. Получаем 11 А. Это значение тока и выставляем регулятором.
И еще хотел сказать пару слов о конструктивном исполнении мотор автоматов. В первую очередь следует отметить, что по способу управления существует два типа автоматов — кнопочные и с поворотным выключателем. Также клеммы могут быть либо винтовые, либо с пружинным контактом ( применяются для двигателей, мощностью до 2 кВт). Можно еще отметить наличие кнопки Тест на лицевой стороне корпуса, позволяющей имитировать срабатывание защиты автомата для проверки его работоспособности.
И в заключении хотел отметить, что эксплуатация двигателей без защитных устройств часто приводит к их выходу из строя, в следствии перегрузки, обрыва фазы, скачков напряжения и т.д. А это в свою очередь приводит к финансовым затратам, простою оборудования. Поэтому автоматы защиты двигателей являются необходимым элементом и не стоит на них экономить, тем более, что цены на них на данный момент вполне приемлемые.
Мотор автоматы и автоматические выключатели – в чем разница?
Как мотор автоматы, так и автоматические выключатели, это устройства, которые предназначаются для защиты и управления электрическими цепями, и электродвигателями в частности. Несмотря на сходство в выполняемых задачах, эти типы устройств имеют массу различий. В чем именно заключается отличия между устройствами?
Особенности мотор автоматов
Мотор автоматы представляют собой устройства, задача которых – защищать электрические двигатели от неполнофазных режимов работы, перегрузок и коротких замыканий. В зависимости от того, какой тип привода используется для работы прибора, мотор автоматы разделяются на кнопочные и поворотные. Устройства второго типа ориентированы на локальное управление работой электрического двигателя. Примечательно, что часть мотор автоматов совместимы с электромагнитным приводом. Его можно подключить для удаленного контроля.
Несмотря на некоторое сходство с автоматическими выключателями, мотор автоматы имеют и массу отличий:
Также стоит отметить широкие возможности по модернизации мотор автоматов при помощи дополнительных приспособлений. Наиболее часто на практике используются монтажные платы, клеммники, боксы с разными уровнями защиты, соединители, а также крепежи для установки этого оборудования в монтажных шкафах.
При необходимости можно увеличить глубину протекции электродвигателя путем монтажа дополнительных элементов. На эту роль хорошо подходят такие устройства, как реле минимального напряжения и расцепитель. Также мотор автоматы отличаются повышенной коммутационной способностью, так как они изначально предназначаются для работы с большими пусковыми токами, которые наблюдаются при запуске двигателей.
Что такое мотор-автоматы
Назначение мотор-автоматов
Такой довольно узкой спецификой применения этих аппаратов коммутации обусловлен ряд отличий от автоматических выключателей общего назначения:
Категория применения АС-3. Данная категория обеспечивает возможность коммутирования цепей питания асинхронных электродвигателей, пусковой ток которых может превышать номинальный в 5-7 раз (кратность тока электромагнитного расцепителя может достигать 10. 14 Iнр).
Более высокая по сравнению с автоматическими выключателями общего назначения электродинамическая стойкость или коммутационная способность (до 100 кА).
Возможность более точной подстройки параметров теплового расцепителя в соответствии с мощностью АД и его режимом работы, позволяющая обеспечить своевременность и надежность защитного отключения.
Виду того, что область их применения ограничивается защитой и управлением трехфазных электродвигателей, современными производителями выпускаются изделия только в трехполюсном исполнении.
Функциональные возможности мотор-автоматов
Как упомянуто выше, эти аппараты коммутации сочетают в себе функции управления и защиты АД, причем в отличие от обычных автоматов защита не ограничивается отключением при возникновении коротких замыканий и длительных токовых перегрузок.
Современные мотор-автоматы чувствительны к питающему напряжению. Так, при снижении напряжения до его порогового значения расцепитель обеспечивает защитное срабатывание автомата, что во многих случаях уберегает двигатель от его преждевременного выхода из строя.
Кроме того, в большинстве устройств реализована довольно важная в управлении электроприводом функция защиты от неполнофазного режима работы; при пропадании одной или двух питающих фаз произойдет защитное срабатывание автомата, устранив тем самым аварийный режим работы и сохранив исправность оборудования.
Возможность легкого конфигурирования мотор-автоматов для решения различных задач может быть реализовано применением дополнительных элементов: вспомогательных дополнительных контактов, клемм, монтажных плат, шинных разводок («подшинков»), различными устройствами блокировки управления, выносных ручек управления, боксами с необходимыми показателями ip и пр.
Перейти на форум
Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.
При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.
Документ, определяющий правила устройства, регламентирующий принципы построения и требования как к отдельным системам, так и к их элементам, узлам и коммуникациям ЭУ, условиям размещения и монтажа.
ПТЭЭП
Требования и обязанности потребителей, ответственность за выполнение, требования к персоналу, осуществляющему эксплуатацию ЭУ, управление, ремонт, модернизацию, ввод в эксплуатацию ЭУ, подготовке персонала.
ПОТЭУ
Автоматический выключатель для защиты электродвигателя — как правильно подобрать?
При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз. Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален. В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.
Задачи устройств для защиты электродвигателей
Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.
Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:
Управляющая и защитная автоматика для двигателя на видео:
Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.
Расчет автомата для электродвигателя
Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.
Внутреннее устройство автомата защиты двигателя на видео:
Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.
Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.
Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.
Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.
Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).
Современные устройства электрозащиты силовых агрегатов
Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.
Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.
Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.
Особенности защиты электрических двигателей в производственных условиях
Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.
Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:
Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.
Заключение
В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены. Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.
Автоматический выключатель для защиты электродвигателя
Расчет автомата для электродвигателя
Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.
Внутреннее устройство автомата защиты двигателя на видео:
Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.
Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.
Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.
Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.
Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).
Схемы подключения
После того как промежуточное реле было установлено в электрический шкаф, следует осуществить его подключение в электрическую схему. Для этого применяются контакты самой катушки и непосредственные контактные элементы. Реле имеет, как правило, несколько пар контактов NO нормально открытые и NC нормально закрытые. Нормальным положением считается отсутствие подачи сигнала на катушку. Так как катушка не обладает полярностью, то подключение контактов осуществляется произвольно.
Устанавливается такой аппарат в схемах управления и автоматики. Располагается между исполнительным устройством (например, контактор) и источником задания. На рисунке изображена электрическая схема приспособления:
На картинке изображено промежуточное реле без подачи напряжения. Если его подать, то контакты переключатся. Напряжение в катушке может быть различное: 220, 24 и 12 вольт.
Как подключить приспособление указано на рисунке ниже:
В некоторых случаях реле промежуточного типа используется как контактор, тогда схема установки будет выглядеть следующим образом:
Как видно, промежуточное реле обладает тремя группами контактов, которые управляют нагрузкой и одной группой для удержания тока в катушке. Можно установить дополнительно контактор, тогда устройство подключается сначала к контактору.
Также данный аппарат можно подключать к датчику движения. Благодаря ему, к системе датчика движения есть возможность подключать несколько мощных ламп. Монтаж происходит следующим образом: обмотка приспособления подключается к датчику, а силовой контакт переключает нагрузку в системе светильников. Как установить такой датчик, показано ниже:
Еще один вариант установки электронного пускателя — к терморегулятору. Схема изображена на картинке (нажмите, чтобы увеличить):
В этом случае подключение терморегулятора и пускателя производится в последовательном порядке к первой фазе и нулевому проводу (на схеме они обозначаются как Т1 и К1 соответственно). Монтаж остальных контактов пускателя осуществляется равномерно между другими фазами.
Напоследок рекомендуем просмотреть полезное видео по теме:
Вот и все, что хотелось рассказать вам о том, как правильно подключить данный аппарат. Надеемся, предоставленная видео инструкция и схемы подключения промежуточного реле были для вас полезными!
Электродвигатель 15 кВт ток
Существует множество разновидностей двигателей мощностью 15 кВт ток, но все они имеют различные характеристики. Рассмотрим примеры таких двигателей.
Самыми распространёнными являются вот такие образцы движков:
Всех объединяет две характеристики, это мощность на 15 кВт и трёхфазность, и тип двигателя – асинхронный и конечно наличие контактора. Остальные характеристики, такие как частота вращения, тип ротора и марка все отличаются. Электродвигатели такого типа предназначены для выполнения работ от сети с переменным током частоты 50 Гц и производятся на такие номинальные напряжения:
Еще варианты подбора и информации об автоматах для электродвигателей смотрите в видео на соседней вкладке.
Защита электродвигателя автоматическим выключателем. Практические расчеты
Особенностью защиты электродвигателя от перегрузок и короткого замыкания является повышенный пусковой ток, который может в семь раз превышать номинальное значение. Самые сильные перегрузки на старте свойственны асинхронным двигателям с короткозамкнутым ротором, которые наиболее используемые в быту и на производстве, поэтому правильная их защита, а также предохранение электропроводки цепей питания электродвигателей являются особенно актуальными.
В бытовой электротехнике проблема с большими стартовыми токами электродвигателей решена при помощи автоматических выключателей, у которых отключение (отсечка) происходит не сразу после превышения номинального тока, а спустя некоторое время.
Данного отрезка времени, который зависит от время-токовой характеристики защитного автомата, должно хватить, чтобы вал двигателя раскрутился до рабочих оборотов, и потребление тока снизилось до номинального уровня. Но автоматические выключатели не обладают гибкостью точной настройки, поэтому для защиты электрических двигателей применяются специальные защитные устройства.
Обычный трехфазный автоматический выключатель часто используется для защиты электродвигателей
Функции защитных устройств электродвигателей
Современные защитные устройства, или другими словами, автоматы защиты электродвигателя, (мотор автоматы), часто совмещаются в одном корпусе с коммутационными аппаратами запуска (пускателями) и выполняют такие функции:
Предохранение от асимметрии (дисбаланса) фаз, или обрыва фазного провода;
Мотор автомат с ручной настройкой и автоматическим управлением
Ранее и до недавнего времени наиболее используемой схемой защиты электродвигателей было подключение в корпусе пускателя теплового реле, последовательно с контактором. Биметаллическая пластина теплового реле при длительной перегрузке нагревается и прерывает цепь самоподхвата контактора. Кратковременное превышение номинальной нагрузки при запуске мотора является недостаточным для нагрева и срабатывания биметаллической пластины. Более подробно о тепловом реле и его подключении можно прочитать в соответствующем разделе данного ресурса.
Контактор электромотора с тепловым реле
Подбор автоматического выключателя
Поскольку первые две функции могут осуществляться обычными автоматическими выключателями, многие пользователи применяют их для защиты своих электродвигателей. Основным недостатком такого способа является отсутствие защиты от дисбаланса, обрыва фаз и скачков напряжения. Выбор защитного автомата осуществляется по его время токовой характеристике и по максимальному пусковому току электродвигателя.
Трехфазный автоматический выключатель
Чтобы правильно подобрать автоматический выключатель по категории и номинальному току, нужно изучить его время токовую характеристику, о которой подробно рассказывается на одной из страниц данного сайта. Категории автоматов (А, B, C, D) определяются соотношением тока отсечки электромагнитного расцепителя к номинальному значению. Нужно иметь в виду, что время токовая характеристика категории не зависит от номинала автоматического выключателя.
Времятоковая характеристика автоматических выключателей категории «C»
Для предотвращения ложного срабатывания автоматического выключателя при запуске электромотора необходимо, чтобы кратковременный пусковой ток (Iпуск) не превышал значение отсечки (мгновенного срабатывания, Iмгн.ср) автомата. Отношение пускового (Iпуск) и номинального тока (In) можно узнать из бирки или паспорта электродвигателя, максимальное значение Iпуск/ In=7.
Бирка двигателя с указанием мощности
Практические расчеты
На практике применяют поправочный коэффициент надежности Kн, который для автоматов с In 100A принимают Kн=1,25. Поэтому должно соблюдаться условие Iмгн.ср ≥ Kн * Iпуск. Вначале автомат выбирают, исходя из наиболее близкого значения номинального тока автоматического выключателя IAB (указывается на корпусе) к рабочему току двигателя (In). Необходимое условие: IAB > In/Кт, где Кт = 0,85 – температурный коэффициент, если автомат устанавливается в шкафу или щитке, иначе Кт=1.
Например, имеется двигатель мощностью 5,5 кВт, η = 85%=0,85; cosφ = 0,8; Iпуск/ In = 7. Вначале нужно рассчитать In = Рn/(Un*√3*η*cosφ) = 5500/(380*√3*0,85*0,8) = 12,28 (А). Допустим, автомат устанавливается в шкаф, Кт = 0,85, значит In/Кт = 12,28/0,85 = 14,44 (А). Наиболее близким является автоматический выключатель на 16А, категории С, (ток мгновенного срабатывания в десять раз превышает номинальное значение).
При расчетах понадобится калькулятор
Теперь нужно проверить условие Iмгн.ср ≥ Kн * Iпуск. Мгновенное срабатывание защитного автомата наступает при Iмгн.ср = 16*10 = 160 (A), пусковой ток Iпуск= In*7 = 12,28*7 = 85,96 (А). Умножаем на Kн (1,4) — 85,96*1,4 = 120,3 (А). Проверяем условие 160 ≥ 120,3 — это значит, что автомат выбран верно. Для упрощенных расчетов, можно принимать номинальный ток двигателя, равным удвоению его мощности, выраженной в киловаттах.
Подключение к электродвигателю
Для обеспечения безопасной работы, перед частотным преобразователем желательно ставить автомат защиты. Причем на трехфазную сеть нужен трехфазный автомат, а не три отдельных однофазных. Это позволит быстро отключить сразу все фазы как при перегрузке проводки, так и при перекосе на одной из фаз. Номинал автоматов выбирают по току нагрузки.
Подключение нулевого и заземляющего проводников обязательно. Тянут их от соответствующих шин напрямую — при помощи провода требуемого сечения. Для защиты человека и контроля за состоянием изоляции, в схему желательно добавить еще УЗО (устройство защитного отключения). Его включают перед автоматом. При возникновении тока утечки, УЗО одновременно разорвет фазы и ноль, полностью обесточив схему.
Схема разрабатывается в зависимости от назначения устройства с которым работает электродвигатель
При покупке дешевых моделей преобразователей, для пуска и останова может понадобиться установка специального реле, фиксирующего контакты в нужном положении. В этом случае с выхода автомата провода подаются на реле, а с его выхода идут на частотный преобразователь. Само подключение двигателей к ПЧ происходит напрямую.
Схема подключения частотного преобразователя для двух электродвигателей
Как известно, асинхронные двигатели могут работать как с однофазным, так и с трехфазным напряжением. Перед подключением движка к преобразователю частоты, надо проверить как подключены обмотки. Они должны быть:
Частотный преобразователь для электродвигателя: подключение напрямую возможно не для всех двигателей
Частотный преобразователь для электродвигателя подключается при помощи кабелей (не проводов), сечение и параметры которых соответствуют параметрам устройства. Эти данные, как и рекомендации по подключению, должны быть в паспорте прибора. Так что внимательно проштудируйте мануал. Это может спасти от многих неприятностей. Все-таки могут быть особенности.
Во-первых
Из соображений безопасности эксплуатации прибора, при подключении частотника (или любого иного прибора) к сети питания, обязательно нужно устанавливать защитный автомат. Автомат устанавливается перед частотником.
При этом если частотный преобразователь подключается в сеть с трёхфазным напряжением, то установить необходимо автомат тоже трёхфазный, но с общим рычагом отключения. Это позволит отключить питание от всех фаз одновременно, если хотя бы на одной фазе будет короткое замыкание или сильная перегрузка.
Если преобразователь частоты подключается в сеть с однофазным напряжением, то соответственно применяется автомат однофазный. Но при этом, в расчет берётся ток одной фазы, умноженный на три.
При подключении трёхфазного автомата, его рабочий ток определяется током одной фазы.
Однозначно запрещено устанавливать защитный автомат в разрыв нулевого кабеля, как при однофазном подключении, так и при трёхфазном
Такое подключение только внешне выглядит идентичным (ошибочно понимать, что цепь одна и не важно, где её разрывать). На самом деле, в случае разрыва фазовых кабелей, при срабатывании автомата, питание полностью отключается и на цепях прибора не будет фаз вовсе
Это безопасно. А при срабатывании автомата с разорванным нулём, работа прибора прекратиться. Но при этом, обмотки двигателя и цепи частотника останутся под напряжением, что является нарушением правил техники безопасности и опасно для человека.
Также, не при каких условиях не разрывается заземляющий кабель. Как и нулевой, они должны быть подключены к соответствующим шинам напрямую.
Методика выбора
Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.
Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.
Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.
Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.
Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.
Особенности защиты электрических двигателей в производственных условиях
Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.
Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:
Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.
Выбрать и рассчитать автомат для электродвигателя
Существуют два распространённых способа выбора включателя для двигателя.
Итак, первый способ это рассчитать общую мощность устройств, которые будут запитаны от этого выключателя. Рассчитываем, что за приборы (телевизор, холодильник, компьютер, стиральная машинка и т.д.) будут подключены в данную цепь электротока, складываем мощность всех этих приборов и на основе этого вычисляем ток розеточной группы. При таких расчетах следует учитывать, сколько фаз в вашем раставшем электродвигателе. Например, в трехфазном, с мощностью в 4 кВт, 4 ∙ 3 = 12А, значит 12А – это сила рабочего тока. Значит, к такому электродвигателю подойдет автомат на 16А.
Второй способ рассчитать максимальную мощность приборов подключенных к автомату, это подсчитать суммарную мощность через паспорта каждого прибора. На паспортах приборов указана мощность, вот суммируем ее и определяем общую мощность. Как пример, 2кВт + 600Вт + 2100Вт = 4700Вт. Теперь просто подставляем значение в общепринятую формулу: I=W/U, где I – это мощность, W – вольтаж и U – ток в сети; I= 4700 делим на 220, вот и получаем 21,36А. Но не забываем, что стиральные машины и некоторые другие приборы имеют свои моторы, и у них есть так называемый пусковой ток, который при запуске намного больше, чем указана мощность прибора. Но производители автоматов это прекрасно знают и поэтому на выключателях есть уставка по току.
Подобрать автомат не так уж и сложно, руководствуясь следующими правилами:
Современные устройства электрозащиты силовых агрегатов
Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.
Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.
Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.
Современная электрозащита двигателей
На рынке электротехнического оборудования все большую популярность набирает защита электродвигателя при помощи универсальных защитных устройств, так называемых мотор автоматов, которые выполняют все приведенные выше защитные функции. Данные устройства имеют модульную конструкцию и устанавливаются на DIN рейку и управляют работой силовых контакторов. Кроме приведенных функций, некоторые мотор автоматы позволяют точно регулировать различные параметры защитного отключения.
Мотор автомат с датчиками — катушками тока
Существует много разновидностей современных мотор автоматов, которые различаются коммутируемой мощностью, набором функций, способом управления, схемой подключения и внешним видом. Чтобы выбрать подходящий аппарат защиты для конкретного двигателя, необходимо знать его параметры номинального и пускового тока, а также нужно определиться с требуемым набором защитных функций и опций.
Стоимость мотор автоматов прямо пропорциональна мощности электродвигателя и функциональным защитным возможностям. Мировыми лидерами по производству защитных мотор автоматов являются такие известные бренды: Schneider Electric, ABB, IEK, Novatek electro, и другие.
Разнообразие представленных на рынке устройств защиты электродвигателей
Приведенный на рисунке ниже автомат защиты двигателя (универсальный блок) позволяет настраивать номинальный и пусковой ток электродвигателя, допустимые пороги напряжения, может отслеживать механическую нагрузку на валу электромотора. Также осуществляется контроль за качеством изоляции обмоток электродвигателя с возможностью установки запрета на включение.
Постоянный мониторинг множества параметров работы позволяет продлить срок эксплуатации двигателя и приводимого в действие оборудования. Специальный дополнительный блок обмена информацией позволяет подключить устройство к автоматическим системам контроля.
Универсальный блок защиты
Защита электромоторов на производстве
Очень часто, в момент включения мощных потребителей электроэнергии (P>100кВт) на мощных производствах во всей электросети, подключенной к трансформаторной подстанции, напряжение опускается ниже установленного минимума.
При данном кратковременном падении напряжения рабочие электромоторы не отключаются, но теряют обороты. При возобновлении нормального напряжения двигатель снова начинает набирать обороты, то есть работать в режиме запуска (перегрузки). Данное явление называют самозапуском.
Изменения скоростей двигателя в разных режимах самозапуска
Если биметаллическая пластина автоматического выключателя или термореле была достаточно прогрета из-за продолжительной нормальной работы электромотора, то в режиме самозапуска тепловой расцепитель может сработать, вызвав ложное срабатывание.
Для мощных электродвигателей на предприятиях для поддержания нормального режима работы, в том числе и после самозапуска, применяют релейную защиту с трансформаторами тока, включенными в цепь питания.
Схема релейной защиты электродвигателя
Отклонения от нормы в силовых проводах электродвигателя с подключенными последовательно первичными обмотками токовых трансформаторов используются для срабатывания защитных реле, которые подключатся к вторичным обмоткам токовых трансформаторов по специальным схемам. Сложные расчеты данных мощных систем защиты осуществляются штатными сотрудниками, заведующими энергоснабжением предприятия, поэтому теория производственной электротехники не входит в тему данной статьи.