Что означает равновесность теплового излучения
Равновесное тепловое излучение
Все тела способны излучать электромагнитные волны. Тела с высокими температурами могут светиться, а при обычной температуре они испускают только инфракрасные волны.
Тепловое излучение – это электромагнитное излучение, возникающее за счет внутренней энергии излучающего тела.
Такое излучение находится в зависимости от температуры тела и его оптических свойств. Только тепловое излучение может находиться в термодинамическом равновесии с веществом. Образование равновесного теплового излучения происходит при помощи адиабатически изолированной системы, когда все тела системы обладают одинаковой температурой. Состояние равновесия становится причиной для осуществления излучения и расхода телом энергии, которая не компенсируется за счет энергии, излучаемой другими телами данной системы, а поглощается телом.
Равновесное правило теплового излучения характеризуется правилом Прево:
Тепловое излучение и его характеристики
Находящиеся два тела при одинаковой температуре могут поглотить за определенный промежуток времени разные количества энергии, тогда их тепловое излучение будет неодинаковым.
Распределение теплового излучения по частотам
при наличии импульса:
Совокупность фотонов, находящихся в полости абсолютно черного тела, получила название фотонного газа.
Происходит непрерывное рождение и уничтожение фотонов. Отсюда следует, что при выводе их распределения по энергиям не существует ограничения в постоянстве. Уравнения для распределения фотонов по энергиям запишется таким образом:
Формула распределения фотонов по частотам выражается как:
Выражение ( 8 ) обрело имя Планка.
Найти максимум спектральной плотности излучения.
Нахождение максимума спектральной плотности излучения происходит из уравнения вида:
Зафиксируем выражение вида:
Отсутствие постоянных множителей необходимо во избежание загромождения вычисления. Их наличие никак не повлияет на результат нахождения максимума. Максимум плотности излучения находится из условия экстремума, то есть:
Для основы решения применяется закон Вина, который был получен в предыдущем задании, то есть:
Равновесное тепловое излучение
Тепловым излучением называется электромагнитное излучение, испускаемое телами за счет их внутренней энергии.
В этом случае энергия внутренних хаотических тепловых движений частиц непрерывно переходит в энергию испускаемого электромагнитного излучения.
В обычных условиях, при комнатной температуре (Т=300К),тепловое излучение тел происходит в инфракрасном диапазоне длин волн (l = 10мкм), недоступным зрительному восприятию глаза. С увеличением температуры светимость тел быстро возрастает, а длины волн смещаются в более коротковолновую область. Если температура достигает тысяч градусов, то тела начинают излучать в видимом диапазоне длин волн (l = 0.4¸0.8мкм).
Нагретое тело за счет теплового излучения отдает внутреннюю энергию и охлаждается до температуры окружающих тел. В свою очередь, поглощая излучение, могут нагреваться холодные тела. Такие процессы, которые могут происходить и в вакууме, называют радиационным теплообменом.
Если излучающее тело окружить оболочкой с идеально отражающей поверхностью, то через некоторое время эта система придет в состояние теплового равновесия.
Равновесным тепловым излучением называют излучение, при котором расход энергии тела на излучение компенсируется энергией поглощенного им излучения для каждой длины волны.
Из всех видов излучения только тепловое излучение может находиться в равновесии с излучающими телами.
Следует отметить, что равновесное тепловое излучение не зависит от природы тел, а зависит только от его температуры.
7.2. Энергетическая светимость. Испускательная и поглощательначя способности. Абсолютно черное тело
Энергетическая светимость тела RТ, численно равна энергии W, излучаемой телом во всем диапазоне длин волн (0
Равновесное тепловое излучение
II. Квантовые свойства электромагнитного излучения
Лекция 7. Тепловое излучение и его характеристики
Тепловым излучением называется электромагнитное излучение, испускаемое телами за счет их внутренней энергии.
В этом случае энергия внутренних хаотических тепловых движений частиц непрерывно переходит в энергию испускаемого электромагнитного излучения.
В обычных условиях, при комнатной температуре (Т=300К),тепловое излучение тел происходит в инфракрасном диапазоне длин волн (l = 10мкм), недоступным зрительному восприятию глаза. С увеличением температуры светимость тел быстро возрастает, а длины волн смещаются в более коротковолновую область. Если температура достигает тысяч градусов, то тела начинают излучать в видимом диапазоне длин волн (l = 0.4¸0.8мкм).
Нагретое тело за счет теплового излучения отдает внутреннюю энергию и охлаждается до температуры окружающих тел. В свою очередь, поглощая излучение, могут нагреваться холодные тела. Такие процессы, которые могут происходить и в вакууме, называют радиационным теплообменом.
Если излучающее тело окружить оболочкой с идеально отражающей поверхностью, то через некоторое время эта система придет в состояние теплового равновесия.
Равновесным тепловым излучением называют излучение, при котором расход энергии тела на излучение компенсируется энергией поглощенного им излучения для каждой длины волны.
Из всех видов излучения только тепловое излучение может находиться в равновесии с излучающими телами.
Следует отметить, что равновесное тепловое излучение не зависит от природы тел, а зависит только от его температуры.
7.2. Энергетическая светимость. Испускательная и поглощательначя способности. Абсолютно черное тело
Тепловое излучение. Равновесное излучение.
Тепловым излучением называется испускание электромагнитных волн за счет внутренней энергии тел.
Излучение телами электромагнитных волн (свечение тел) может осуществляться за счет различных видов энергии. Виды свечения, возбуждаемые за счет любого вида энергии, кроме внутренней (тепловой) энергии, объединяются под общим названием «люминесценция». К ним относятся хемилюминесценция, электролюминесценция и др.
Электромагнитное излучение всех длин волн обусловливается колебаниями электрических зарядов, входящих в состав вещества, т.е. электронов и ионов. При этом колебаниям ионов соответствует излучение низкой частоты (инфракрасное) вследствие значительной массы колеблющихся зарядов. Излучение, возникающее в результате движения электронов, может иметь высокую частоту (видимое и ультрафиолетовое излучение), если электроны входят в состав атомов или молекул и, следовательно, удерживаются около своего положения равновесия значительными силами. Свободные электроны, приведенные в движение, испытывают нерегулярное торможение, и их излучение характеризуется спектром различных длин волн.
Тепловое излучение имеет место при любой температуре. Тела, нагретые до достаточно высокой температуры, светятся белым цветом, обладая сплошным спектром частот. С понижением температуры уменьшается интенсивность излучения и изменяется спектральный состав излучения – все больший вклад вносят длинные волны (красные и инфракрасные). При низких температурах излучаются практически лишь длинные (инфракрасные) электромагнитные волны.
Пример: Нагревая какое-либо тугоплавкое вещество (уголь, металл), мы замечаем, что видимое на глаз темно-красное свечение появляется лишь при определенной температуре (около 500˚С). По мере повышения температуры свечение становится ярче и обогащается более короткими волнами, переходя примерно при 1500˚С в яркое белое каление. При помощи спектроскопа можем видеть, как по мере повышения температуры постепенно развивается сплошной спектр видимого свечения, т.е. от длин волн порядка 700 нм до 350нм (от красного до фиолетового). При помощи термоэлемента можно обнаружить, что кроме видимого спектра, нагреваемое тело излучает и инфракрасные, и ультрафиолетовые волны.
Не следует смешивать испускание лучей с их отражением. Любое излучение тела сопровождается потерей энергии. Для того чтобы обеспечить возможность непрерывного излучения энергии, необходимо пополнять ее убыль, иначе излучение будет сопровождаться какими-либо изменениями внутри тела, и состояние излучающей системы будет непрерывно изменяться. Нарушение равновесия теплового излучения вызывает возникновение процессов, восстанавливающих это равновесие. Допустим, что тело излучает больше энергии, чем поглощает. Тогда внутренняя энергия тела будет убывать, что приведет к понижению его температуры. Это в свою очередь повлечет уменьшение излучаемой телом энергии, пока количество излучаемой энергии не станет равным количеству поглощаемой, и равновесие восстановится.
Равновесным называется такое излучение, при котором все тела теплоизолированной (адиабатно замкнутой) системы находятся при одной и той же температуре.
Из всех видов излучения равновесным может быть только тепловое излучение. К равновесным состояниям и процессам применимы законы термодинамики. Перейдем к рассмотрению законов теплового излучения. Но прежде определим характеристики теплового излучения.
Дата добавления: 2019-07-26 ; просмотров: 284 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Равновесное тепловое излучение.
Если создать некоторую оболочку, непрозрачную для электромагнитных волн, и будем поддерживать ее при постоянной температуре, то внутри ее установится равновесие. Вся энергия, излучаемая внутренней поверхностью оболочки, будет ею же и поглощаться. Излучение в адиабатически замкнутой системе (не обменивающейся теплотой с внешней средой) называется равновесным. Если создать маленькое отверстие в стенке полости состояние равновесия измениться слабо и выходящее из полости излучение будет соответствовать равновесному излучению.
Если в такое отверстие направить луч, то после многократных отражений и поглощения на стенках полости он не сможет выйти обратно наружу. Это значит, что для такого отверстия коэффициент поглощения a(l, T) = 1.
Рассмотренная замкнутая полость с небольшим отверстием служит одной из моделей абсолютно черного тела.
Абсолютно черным телом называется тело, которое поглощает все падающее на него излучение независимо от направления падающего излучения, его спектрального состава и поляризации (ничего не отражая и не пропуская).
Для абсолютно черного тела, спектральная плотность энергетической светимости является некоторой универсальной функцией длины волны и температуры f(l,T) и не зависит от его природы.
Все тела в природе частично отражают падающее на их поверхность излучение и поэтому не относятся к абсолютно черным телам. Если коэффициент монохроматического поглощения тела одинаков для всех длин волн и меньше единицы (a(l, T) = aТ = const монохроматического поглощения является той же универсальной функцией длины волны и температуры f(l,T), что и спектральная плотность энергетической светимости абсолютно черного тела:
(3)
Уравнение (3) представляет собой закон Кирхгофа.
Закон Кирхгофа можно сформулировать таким образом: для всех тел системы, находящихся в термодинамическом равновесии, отношение спектральной плотности энергетической светимости к коэффициенту монохроматического поглощения не зависит от природы тела, является одинаковой для всех тел функцией, зависящей от длины волны l и температуры Т.
Из вышесказанного и формулы (3) ясно, что при данной температуре сильнее излучают те серые тела, которые обладают большим коэффициентом поглощения, а наиболее сильно излучают абсолютно черные тела. Так как для абсолютно черного тела a(l, T)=1, то из формулы (3) следует, что универсальная функция f(l, T) представляет собой спектральную плотность энергетической светимости абсолютно черного тела
Законы излучения абсолютно черного тела
Формула Планка.
Постоянная h была названа постоянной Планка, c-скорость света в вакууме. На основании этой гипотезы, используя статистические методы, он получил следующую формулу для универсальной функции f, в которую входит энергия кванта hn:
(4),
где k-постоянная Больцмана.
Формулу для универсальной функции, зависящей от длины волны l (а не от частоты n) можно вывести используя определение спектральной плотности энергетической светимости
.
Знак “минус” здесь не играет существенной роли и отражает тот факт, что dn dl имеют разные знаки (т.е. если l увеличивается, n уменьшается)
Следовательно, (5)
|
Рис.1 Зависимость спектральной плотности энергетической светимости абсолютно черного тела от длины волны.
Примечание: На рисунке заштрихован интервал длин волн, соответствующий видимому свету.
На рис.1 представлены графики f(l, T) для различных температур. Формула (5 * ) хорошо согласуется с экспериментальными данными во всем интервале наблюдаемых длин волн и температур и называется формулой Планка.
Основные законы излучения абсолютно черного тела можно получить из формулы Планка. Однако многие из них получены на основе экспериментальных данных, а также представлений классической физики еще до открытия Планком своей формулы. Поэтому эти закономерности носят имя ученых, открывших их, и формулируются в виде законов.
Закон смещения Вина.
Из рис.1 видно, что максимум спектральной плотности энергетической светимости с ростом температуры смещается в сторону более коротких волн. Чтобы найти закон смещения данного максимума, необходимо продифференцировать выражение (5) по l и приравнять производную к нулю. Из полученного уравнения можно найти длину волны соответствующую максимуму спектральной плотности энергетической светимости абсолютно черного тела как функцию температуры:
(6)
(7)
Закон Винаможно сформулировать следующим образом: длина волны, соответствующая максимальному значению спектральной плотности энергетической светимости абсолютно черного тела, обратно пропорциональна его температуре.
2.3.3. Закон Рэлея-Джинса.
Для больших длин волн, когда показатель экспоненты в формуле Планка (5) значительно меньше единицы, экспоненту можно разложить в ряд и ограничиться двумя членами разложения:
(8).
Теперь, если подставить (8) в (5), получим:
(9)
Эта формула, получившая название формулы Рэлея-Джинса, хорошо описывает тепловое излучение абсолютно черного тела на длинах волн, удовлетворяющих условию:
(10)
Рэлей и Джинс получили эту формулу до открытия Планка, основываясь на представлении о непрерывном характере испускания электромагнитных волн и на законе о равномерном распределении энергии по степеням свободы.
Формула Рэлея-Джинса верна для длинных волн и совершенно не применима для коротких.
Закон Стефана – Больцмана
В 1879 г. Стефан из анализа экспериментальных результатов, а в 1884г. Больцман из термодинамических представлений получили зависимость энергетической светимости абсолютно черного тела от температуры:
Из выражения (11) можно сформулировать закон Стефана-Больцмана: Энергетическая светимость абсолютно чёрного тела пропорциональна четвёртой степени его термодинамической температуры.
Формулу (11) можно получить, используя формулу Планка (5). Для этого необходимо в формулу (1) подставить выражение (5) и провести интегрирование по всем длинам волн (от нуля до бесконечности):
(12)
Введем новую переменную:
(13)
Подставив (13) в (12), получим:
(14)
Если учесть, что значение несобственного интеграла в (14) равно π 4 /15, получим:
(15)
Из сравнения (11) с (15) следует, что постоянная Стефана-Больцмана равна:
(16)
Оптическая пирометрия.
Оптической пирометрией называется совокупность методов измерения температуры тел, основанных на законах теплового излучения. Приборы, применяемые для этого, называются пирометрами.
Эти методы очень удобны для измерения температур различных объектов, где сложно или вообще невозможно применить традиционные контактные датчики. Это относится в первую очередь к измерению высоких температур.
В оптической пирометрии различают следующие температуры тела: радиационную, цветовую, яркостную.
Радиационная температура.
Если же измерить мощность, излучаемую некоторым телом с единицы поверхности в достаточно широком интервале волн и ее величину сопоставить с энергетической светимостью абсолютно черного тела, то можно, используя формулу (11), вычислить температуру этого тела, как
(17)
Определенная таким способом температура Tp будет достаточно точно соответствовать истинной температуре T при условии, что коэффициент монохроматического поглощения поверхности тела должен быть близок к единице. Для реальных (нечерных) тел истинная температура Т оказывается больше радиационной Тр. Например, для серого тела закон Стефана-Больцмана может быть записан в виде
Rm(T) = αT σT 4 ;
где αT r(λ,T) для какой либо определённой длины волны равна спектральной плотности энергетической светимости rТ(λ,Т) данного тела для той же длины волны.
Так как для нечерного тела спектральная плотность энергетической светимости при определенной температуре будет всегда ниже чем у абсолютно черного тела, то истинная температура тела будет всегда выше яркостной.
В качестве яркостного пирометра широко используется пирометр с исчезающей нитью. Принцип определения температуры основан на визуальном сравнении яркости раскаленной нити лампы пирометра с яркостью изображения исследуемого объекта. Равенство яркостей, наблюдаемое через монохроматический светофильтр (обычно измерения проводят на длине волны λ=660 нм), определяется по исчезновению изображения нити пирометрической лампы на фоне изображения раскаленного объекта. Накал нити лампы пирометра регулируется реостатом, а температура нити определяется по градуировочному графику, или таблице. Если температура нити высока, то для ослабления потока излучения применяется также и нейтральный светофильтр.
Пусть мы в результате измерений получили равенство яркостей нити пирометра и исследуемого объекта и по графику определили температуру нити пирометра Т1. Тогда, на основании формулы (3) можно записать:
где α1(λ,T1) и α2(λ,T2) коэффициенты монохроматического поглощения материала нити пирометра и исследуемого объекта соответственно;
T1 и T2 – температуры нити пирометра и объекта.
4. Определение постоянной Стефана-Больцмана с помощью оптического пирометра
Для реальных (не черных, в том числе и серых) тел на основании закона Стефана-Больцмана можно определить мощность излучения во всем интервале длин волн W:
где S – площадь поверхности нагретого тела;
αТ –коэффициент черноты реального тела. Он равен отношению энергетической светимости данного реального тела к энергетической светимости абсолютно черного тела при той же температуре. Данный коэффициент представляет интегральный (по всем длинам волн) коэффициент поглощения реального тела. Для серого тела этот коэффициент представляет собой коэффициент монохроматического поглощения αТ, не зависящий от длины волны (введен ранее в 2.2). В качестве тела-источника теплового излучения можно взять вольфрамовую спираль вакуумной лампы накаливания. Подводимая энергия электрического тока в такой лампе расходуется в основном на тепловое излучение. Доля рассеиваемой мощности лампы за счет теплопроводности составляет небольшую величину и ею можно пренебречь в общем балансе энергии.
где Iл, Uл — ток и напряжение питания лампы. Зная длину и диаметр нити накала, а также коэффициент черноты αТ вольфрама в видимой области спектра, легко вычислить постоянную Стефана-Больцмана:
(23)