Что показывает диаграмма растяжения материала
Что показывает диаграмма растяжения материала
Диаграммы нагружения и разгружения образцов. Закон повторного нагружения
         Д иаграмма растяжения образца позволяет оценить поведение материала образца в упругой и упруго-пластической стадиях деформирования, определить механические характеристики материала.
         Д ля получения численно сопоставимых между собой механических характеристик материалов диаграммы растяжения образцов перестраивают в диаграммы растяжения материалов, т.е. в зависимость между напряжением   и деформацией
 , которые определяют по формулам
     
,
где  - сила, действующая на образец,
       - начальная площадь поперечного сечения и начальная длина расчетной части образца.
         Д иаграмма растяжения материала, полученная при этих условиях (без учета изменения размеров расчетной части образца), называется условной диаграммой растяжения материала в отличие от действительной диаграммы растяжения, которую получают с учетом изменений размеров образца.
         Д иаграмма растяжения материала зависит от его структуры, условий испытаний (температуры, скорости деформирования).
   
         Д иаграмма растяжения образца из низкоуглеродистой стали при однократном нагружении до разрушения. Конечная точка диаграммы соответствует разрушению.
         П ри нагружении до предела пропорциональности (точка Г диаграммы) и при дальнешем уменьшении нагрузки образец разгружается по линейному закону, который совпадает с законом первичного нагружения. В этом заключается «закон разгрузки». При нагружении образца в пределах действия закона Гука законы нагружения и последующего разгружения совпадают. При полной разгрузке образца его размеры и форма возвращаются к первоначальной кривой однократного нагружения.
         Д алее начинается участок разрушения или участок местной текучести. Он характеризуется местным утонением образца и появлянием шейки.
          П ри разгружении образца в пределах участка ОА законы нагружения, разгружения и повторного нагружения совпадают.
Виды диаграмм растяжения
Виды диаграмм растяжения
Различные материалы по-разному ведут себя под нагрузкой, характер деформаций и разрушения зависит от типа материалов.
Принято делить материалы по типу их диаграмм растяжения на три группы. К первой группе относят пластичные материалы, эти материалы имеют на диаграмме растяжения площадку текучести (диаграммы первого типа) (рис. 22.5а). Ко второй группе относятся хрупкие материалы, эти материалы мало деформируются, разрушаются по хрупкому типу. На диаграмме нет площадки текучести (рис. 22.56).
К третьей группе относят материалы, не имеющие площадку текучести, но значительно деформирующиеся под нагрузкой, их называют пластично-хрупкими (рис. 22.5в).
Таким образом, хрупкий и пластично-хрупкий материалы не имеют площадки текучести, а в справочниках отсутствует характеристика «предел текучести». По этой особенности их можно узнать.
Пластично-хрупкие материалы значительно деформируются, этого нельзя допустить в работающей конструкции. Поэтому их деформацию обычно ограничивают. Максимально возможная относительная деформация . По величине максимально возможной деформации определяется соответствующее нормальное напряжение
, которое принимают за предельное.
Эта теория взята со страницы решения задач по предмету «техническая механика»:
Возможно эти страницы вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Диаграмма растяжения различных материалов
Диаграмма растяжения
показывает величину нагрузки, передаваемой образцу. Удлинение образца устанавливается специальным измерительным прибором. Есть машина, которая автоматически строит удлинение образца в зависимости от нагрузки. Среди таких машин есть, например, машина IM-4R, выпускаемая на нашем заводе. Общий вид этой машины показан на рисунке. 29.
В испытательной машине предел прочности образца создается механическим или гидравлическим Людмила Фирмаль
устройством. Это 31-й 29А Для риса. На рисунке 30 показана принципиальная схема машины с гидравлической системой. Масло впрыскивается в цилиндр А, который поднимает поршень и растягивает образец. Значение растягивающего усилия можно определить по давлению, измеренному манометром. Для сравнения результатов испытаний, проведенных в разных лабораториях, были определены тип и размер выборки. Для риса. 31, a и b представляют
круглые (нормальные) и плоские образцы, используемые в Советском Союзе при испытаниях на растяжение металла. Расчетная длина нормального образца равна расстоянию между рисками, приложенными к цилиндрической части / 0 = 10d == 200 мм. * В некоторых случаях используются так называемые небольшие образцы (рис. 31, Б), которые были испытаны на небольшой машине типа IM-4P. Испытание материала на растяжение особенно важно, и
напряжением o и деформацией E. Как правило, для образца условное нормальное напряжение o рассчитывается путем деления нагрузки P на начальную площадь поперечного сечения образца f o. : Деформация e рассчитывается путем деления абсолютного удлинения L / на исходную длину образца / 0: тонна — Два упомянутых типа напряженности связаны только по масштабу. Рис 30л Поэтому низкоуглеродистая (пластиковая) сталь ст.3 (рис. 32, а). На этом рисунке нам нужно обратить внимание на некоторые характерные точки A, B, C, D и M. В начале графика ОА фигура представляет собой диагональную прямую линию. В этих пределах напряжение
растет пропорционально Рис 31а 2 Порядок № 1037 пропорционален деформации e, т. Е. Наблюдается крючковый метод, который Людмила Фирмаль
соответствует пределам пропорциональности APC. Пропорциональный предел APC — это максимальное напряжение, при котором действует закон Крюка (Сталь St.3APC «» 2100 кг! SMG®210M «LI2). Касательная к горизонтальной оси угла наклона прямой части ОА равна модулю упругости: В нарушение точки А, кривой диаграммы и закона Хука выше деформация начинает расти быстрее, чем возрастает напряжение. Вы можете отметить точку B, которая очень близка к точке A на графике кривой на рисунке и соответствует пределу упругости AUP. Предел упругости AUP — это максимальное напряжение, которое материал может выдержать без каких-либо признаков остаточной деформации во время разгрузки *. Поскольку точка B близка к точке A, ее часто считают совпадением. Если вы проведете вертикальную линию через точку B, с левой стороны этой
линии на диаграмме будет зона упругой деформации, а справа — зона упругой пластической деформации (упругая деформация и пластическая деформация). Начиная с некоторой точки C, есть горизонтальный (или почти горизонтальный) участок, соответствующий диаграмме история * По ГОСТ условным пределом для упругости st05 является напряжение, при котором остаточная деформация достигает 0,05%. Если в технических условиях имеются специальные указания, то остаточное удлинение считается меньшим. 34 от предела текучести. В этой области деформация увеличивается без увеличения нагрузки, и материал, кажется, течет. Предел текучести
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Статическое растяжение
Статическое растяжение — одно из наиболее распространённых видов испытаний для определения механических свойств материалов.
Содержание
Основные характеристики, определяемые при испытании
При статическом растяжении, как правило, определяются следующие характеристики материала.
Основные типы материалов
Принято разделять пластичные и хрупкие материалы. Основное отличие состоит в том, что первые деформируются в процессе испытаний с образованием пластических деформаций, а вторые практически без них вплоть до своего разрушения. За критерий для условной классификации материалов можно принять относительное остаточное удлинение δ = (lк − l0)/l0, где l0 и lк — начальная и конечная длина рабочей части образца), обычно вычисляемое в процентах. В соответствии с величиной остаточного удлинения материалы можно разделить на:
Для испытаний на статическое растяжение используют образцы как с круглым, так и с прямоугольным сечением. Предъявляются повышенные требования к изготовлению образцов, как с точки зрения геометрии, так и с точки зрения обработки резанием. Требуется высокая однородность диаметра образца по его длине, соосность и высокое качество поверхности (малая шероховатость, отсутствие царапин и надрезов). При изготовлении образцов следует избегать перегрева материала и изменений его микроструктуры.
Образцы круглого сечения, как правило, имеют рабочую длину, равную четырём или пяти диаметрам — т. н. короткие образцы или десяти диаметрам — т. н. нормальные образцы. Перед началом испытания замеряется диаметр образца (обычно 6, 10 или 20 мм) для вычисления напряжения σ и для расчёта относительного остаточного сужения после разрушения образца. В случае использования экстензометра, длина рабочей части образца не замеряется, а деформация ε и относительное удлинение при разрушении регистрируются автоматически с помощью компьютера или измеряются по диаграмме σ — ε. При отсутствии экстензометра (не рекомендуется стандартом), отмечается рабочая длина образца, деформация ε рассчитывается по перемещениям конца образца (захвата), а относительное удлинение при разрушении рассчитывается путём замера разрушенного образца.
Диаграмма растяжения пластичного материала
Обычно диаграмма растяжения является зависимостью приложенной нагрузки P от абсолютного удлинения Δl. Современные машины для механических испытаний позволяют записывать диаграмму в величинах напряжения σ (σ = P/A0, где A0 — исходная площадь поперечного сечения) и линейной деформации ε (ε = Δl/l0 ). Такая диаграмма носит название диаграммы условных напряжений, так как при этом не учитывается изменение площади поперечного сечения образца в процессе испытания.
Начальный участок является линейным (т. н. участок упругой деформации). На нём действует закон Гука:
Затем начинается область пластической деформации. Эта деформация остаётся и после снятия приложенной нагрузки. Переход в пластическую область обнаруживается не только по проявлению остаточных деформаций, но и по уменьшению наклона кривой с увеличением степени деформации. Данный участок диаграммы обычно называют площадкой (зоной) общей текучести, так как пластические деформации образуются по всей рабочей длине образца. С целью изучения и точного анализа диаграммы деформации, современные испытательные машины оснащены компьютеризированной записью результатов.
По наклону начального участка диаграммы рассчитывается модуль Юнга. Для малоуглеродистой стали наблюдается т. н. «зуб текучести» и затем площадка предела текучести. Явление «зуба» текучести связано с дислокационным механизмом деформации. На начальном участке плотность дислокаций является недостаточной для обеспечения более высокой степени деформации. После достижения точки верхнего предела текучести начинается интенсивное образование новых дислокаций, что приводит к падению напряжения. Дальнейшая деформация при пределе текучести происходит без роста напряжения . Зависимость предела текучести,
от размера зерна, d, выражена соотношением Холла-Петча:
После достижения конца площадки текучести (деформация порядка 2 — 2,5 %) начинается деформационное упрочнение (участок упрочнения), видимое на диаграмме, как рост напряжения с ростом деформации. В этой области до достижения максимальной нагрузки (напряжения (σВ) макродеформация остаётся равномерной по длине испытуемого образца. После достижения точки предела прочности начинает образовываться т. н. «шейка» — область сосредоточенной деформации. Расположение «шейки» зависит от однородности геометрических размеров образца и качества его поверхности. Как правило, «шейка» и, в конечном счёте, место разрушения расположено в наиболее слабом сечении. Кроме того, важное значение имеет одноосность напряжённого состояния (отсутствие перекосов образца в испытательной машине). Для пластичных материалов при испытании на статическое растяжение одноосное напряжённое состояние сохраняется лишь до образования т. н. «шейки» (до достижения максимальной нагрузки и начала сосредоточенной деформации).
Вид диаграммы деформации, приведённый на рис. 1 является типичным для О.Ц.К. материалов с низкой исходной плотностью дислокаций.
Для многих материалов, например, с Г. Ц. К. кристаллической решёткой, а также для материалов с высокой исходной плотностью дефектов, диаграмма имеет вид, показанный на рис. 2. Основное отличие — отсутствие явно выраженного предела текучести. В качестве предела текучести выбирается значение напряжения при остаточной деформации 0,2 % (σ0.2).
После достижения максимума нагрузки происходит падение нагрузки (и, соответственно, напряжения σ) за счёт локального уменьшения площади поперечного сечения образца. Соответствующий (последний) участок диаграммы называют зоной местной текучести, так как пластические деформации продолжают интенсивно развиваться только в области шейки.
Иногда используется диаграмма истинных напряжений, S — e (истинное напряжение S = P/A, где A — текущая площадь поперечного сечения образца; истинная деформация e = Δl/l, где l — текущая длина образца). В этом случае, после достижения максимальной нагрузки не происходит падения напряжения, истинное напряжение растёт за счёт локального уменьшения сечения в «шейке» образца. Поэтому различие между диаграммами истинных и условных напряжений наблюдается только после предела прочности — до точки 1 они практически совпадают друг с другом.
Образцы из пластичного материала разрушаются по поперечному сечению с уменьшением диаметра в месте разрыва из-за образования «шейки».
Диаграмма растяжения хрупкого материала
Диаграмма растяжения и диаграмма условных напряжений хрупких материалов по виду напоминает диаграмму, показанную на рис. 2 за тем исключением, что не наблюдается снижения нагрузки (напряжения) вплоть до точки разрушения. Кроме того, данные материалы не получают таких больших удлинений как пластичные и по времени разрушаются гораздо быстрее. На диаграмме хрупких материалов уже на первом участке имеется ощутимое отклонение от прямолинейной зависимости между нагрузкой и удлинением (напряжением и деформацией), так что о соблюдении закона Гука можно говорить достаточно условно. Так как пластических деформаций хрупкий материал не получает, то в ходе испытания не определяют предела текучести. Не имеет особенного смысла также рассчитывать и относительное сужение образца, так как шейка не образуется и диаметр после разрыва практически не отличается от исходного.
Влияние скорости деформации и температуры на прочностные характеристики
Стандарты на проведение испытаний на статическое растяжение, как правило, ограничивают скорость деформации или скорость приложения нагрузки. Так, стандарт ASTM E-8 ограничивает скорость деформации величиной 0,03 — 0,07 мм/мин. Такое ограничение вызвано искажением результатов за счёт повышения прочности металлов с ростом скорости деформации (при постоянной температуре). При скоростях деформации до 1 сек скорость деформации практически не влияет на прочностные характеристики (в частности, на предел текучести).
В общем виде можно выразить формулу влияния скорости деформации на предел текучести в виде:
где — скорость деформации;
— астотный фактор,
— активационный объём;
— напряжение течения;
— экстраполяция напряжения течения на нулевую скорость деформации.
Эта же зависимость даёт и зависимость напряжения течения от температуры. В области низких температур и при отсутствии фазовых превращений прочность кристаллических материалов повышается. Вклад в повышение прочности даёт и переход от термически активируемого процесса деформации за счёт движения дислокаций к механизму деформации путём двойникования.
диаграмма растяжения
3.2.1 диаграмма растяжения (tensile diagram): Зависимость между удлинением и нагрузкой вплоть до разрушения образца в режиме деформирования с постоянной скоростью.
Смотреть что такое «диаграмма растяжения» в других словарях:
Диаграмма растяжения — (tensile diagram): зависимость между удлинением и нагрузкой вплоть до разрушения образца в режиме деформирования с постоянной скоростью. Источник: Распоряжение Росавтодора от 16.07.2010 N 468 р Об издании и применении ОДМ 218.5.006 2010… … Официальная терминология
диаграмма — 3.1.3.27 диаграмма: Условное графическое изображение числовых величин или их соотношений, выполненное с помощью линий, плоскостей, геометрических фигур, рисунков. Источник … Словарь-справочник терминов нормативно-технической документации
ДИАГРАММА — графический способ изображения, наглядно показывающий какое либо явление, состояние, взаимосвязь или соотношение между различными величинами (напр. (см.), Д. растяжения или состояния сплава) … Большая политехническая энциклопедия
диаграмма деформации — [stress strain diagram] графическое изображение зависимости силовых характеристик материала (напряжение, истинное напряжение и т. п.) от деформации (удлинение, сужение, истинное удлинение и т. п.) при конкретных условиях испытаний. Различают… … Энциклопедический словарь по металлургии
Диаграмма — так называется кривая линия, вычерчиваемая самопишущим прибором, предназначенным для измерения какой либо величины, изменяющейся с течением времени. Таковы Д. индикатора (см.), ординаты которых выражают движение пара в паровом цилиндре, а… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Диаграмма (граф.) — так наз. кривая линия, вычерчиваемая самопишущим прибором, предназначенным для измерения какой либо величины, изменяющейся с течением времени. Таковы Д. индикатора (см.), ординаты которых выражают движение пара в паровом цилиндре, а абсциссы… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Рабочая диаграмма арматуры — – кривая растяжения арматуры, изображенная в прямоугольных координатах, с указанием на абсциссе деформаций в %. а на кординате напряжений в МПа; на кривой указываются точки, соответствующие напряжениям. [Терминологический словарь по бетону… … Энциклопедия терминов, определений и пояснений строительных материалов
ДЕФОРМИРОВАНИЯ ДИАГРАММА — графич. изображение зависимости между напряжениями (или нагрузками) и деформациями материала (или перемещениями при деформировании). Каждому виду нагружения присуща своя Д. д., поэтому различают диаграммы растяжения, сжатия, сдвига, изгиба,… … Большой энциклопедический политехнический словарь
Статическое растяжение — Машина для испытаний на растяжение с электромеханическим приводом Статическое растяжение одно из наиболее распространённых видов испытаний для определения механических свойств материалов … Википедия
ОДМ 218.5.006-2010: Рекомендации по методикам испытаний геосинтетических материалов в зависимости от области их применения в дорожной отрасли — Терминология ОДМ 218.5.006 2010: Рекомендации по методикам испытаний геосинтетических материалов в зависимости от области их применения в дорожной отрасли: 3.3.3 агрессивная среда (aggressive substance): Среда, вызывающая разрушение материалов и… … Словарь-справочник терминов нормативно-технической документации