Что показывает коэффициент с в квадратичной функции на графике

Как определить a, b и c по графику параболы

Предположим, вам попался график функции \(y=ax^2+bx+c\) и нужно по этому графику определить коэффициенты \(a\), \(b\) и \(c\). В этой статье я расскажу 3 простых способа сделать это.

1 способ – ищем коэффициенты на графике

Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью \(y\) – целые числа. Если это не так, советую использовать способ 2.

Коэффициент \(a\) можно найти с помощью следующих фактов:

— Если \(a>0\), то ветви параболы направленных вверх, если \(a 1\), то график вытянут вверх в \(a\) раз по сравнению с «базовым» графиком (у которого \(a=1\)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример:

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Выписываем координаты этих точек и подставляем в формулу квадратичной функции: \(y=ax^2+bx+c\). Получится система с тремя уравнениями.

Решаем систему.
Пример:

Вычтем из второго уравнения первое:

Подставим \(9a\) вместо \(b\):

Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки \(A\) и \(B\) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:

Подставим в первое уравнение \(a\):

Получается квадратичная функция: \(y=-x^2-9x-15\).

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Сразу заметим, что по графику можно сразу определить, что \(c=4\). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: \(C(-1;8)\), \(D(1;2)\) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Таким образом имеем систему:

Сложим 2 уравнения:

Подставим во второе уравнение:

Теперь найдем точки пересечения двух функций:

Теперь можно найти ординату второй точки пересечения:

3 способ – используем преобразование графиков функций

Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.

Сам способ базируется на следующих идеях:

График \(y=-x^2\) симметричен относительно оси \(x\) графику \(y=x^2\).

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

– Если \(a>1\) график \(y=ax^2\) получается растяжением графика \(y=x^2\) вдоль оси \(y\) в \(a\) раз.
– Если \(a∈(0;1)\) график \(y=ax^2\) получается сжатием графика \(y=x^2\) вдоль оси \(y\) в \(a\) раз.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

– График \(y=a(x+d)^2\) получается сдвигом графика \(y=ax^2\) влево на \(d\) единиц.
— График \(y=a(x-d)^2\) получается сдвигом графика \(y=ax^2\) вправо на \(d\) единиц.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

График \(y=a(x+d)^2+e\) получается переносом графика \(y=a(x+d)^2\) на \(e\) единиц вверх.
График \(y=a(x+d)^2-e\) получается переносом графика \(y=a(x+d)^2\) на \(e\) единиц вниз.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому \(a=1\). То есть она получена перемещениями графика базовой параболы \(y=x^2\).

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на \(4\).

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

То есть наша функция выглядит так: \(y=(x-5)^2-4\).
После раскрытия скобок и приведения подобных получаем искомую формулу:

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Чтобы найти \(f(6)\), надо сначала узнать формулу функции \(f(x)\). Найдем её:

Парабола растянута на \(2\) и ветви направлены вниз, поэтому \(a=-2\). Иными словами, первоначальной, перемещаемой функцией является функция \(y=-2x^2\).

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Парабола смещена на 2 клеточки вправо, поэтому \(y=-2(x-2)^2\).

Парабола поднята на 4 клеточки вверх, поэтому \(y=-2(x-2)^2+4\).

Источник

Квадратичная функция (ЕГЭ 2022)

Проверь себя, ответь на эти вопросы:

В конце статьи ты будешь знать ответы на эти вопросы.

Квадратичная функция — коротко о главном

Квадратичная функция – функция вида \( y=a<^<2>>+bx+c\), где \( a\ne 0\), \( b\) и \( c\) ­– любые числа (коэффициенты), \( c\) – свободный член.

График квадратичной функции – парабола.
Вершина параболы: \( \displaystyle <_<в>>=\frac<-b><2a>\).

Квадратичная функция вида: \( y=a<^<2>>\).

Чем больше значение \( \displaystyle a\) (по модулю), тем у́же становится парабола (ветви становятся более крутыми). И наоборот, чем меньше \( \displaystyle a\), тем парабола шире.

Варианты расположения параболы в зависимости от коэффициента \( \displaystyle a\) и дискриминанта \( \displaystyle D=<^<2>>-4ac\).

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Что такое функция?

Не знаешь? Тогда сперва прочитай тему «Функции» – она несложная, но очень важная.

А мы пока повторим.

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция \( y=f\left( x \right)\), это значит что каждому допустимому значению переменной \( x\) (которую называют «аргументом») соответствует одно значение переменной \( y\) (называемой «функцией»).

Что значит «допустимому»? Если не можешь ответить на этот вопрос, еще раз вернись к теме «Функции».

Все дело в понятии «область определения»:

Для некоторых функций не все аргументы можно подставить в зависимость.

Например, для функции \( y=\sqrt\) отрицательные значения аргумента \( x\) – недопустимы.

Кстати, а с линейной функцией ты уже дружишь? Про нее все написано в теме «Линейная функция» – там ты поймешь, что в функциях ничего страшного нет и научишься понимать и использовать коэффициенты (это циферки перед буквой \( x\)).

И еще, надеюсь, ты умеешь решать квадратные уравнения? Освежить память можно, почитав тему «Квадратные уравнения».

Квадратичная функция — подробнее

Квадратичная функция – это функция вида \( y=a<^<2>>+bx+c\), где \( a\ne 0\), \( b\) и \( c\) ­– любые числа (они и называются коэффициентами).

Число \( a\) называют старшим или первым коэффициентом такой функции, \( b\) – вторым коэффициентом, а \( c\) – свободным членом.

Другими словами, квадратичная функция – это зависимость, содержащая аргумент в квадрате. Отсюда и ее название.

Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения \( D\left( y \right)\) и область значений\( E\left( y \right)\).

Какими могут быть значения аргумента квадратичной функции \( y=a<^<2>>+bx+c\)? Правильно, любыми. Ведь в эту формулу можно подставить любое число (в отличии, например, от функции \( y=\frac<1>\) – в нее нельзя подставить \( x=0\)).

Значит, область определения – все действительные числа:

А теперь множество значений. Все ли значения может принимать функция?

Достаточно рассмотреть самую простую квадратичную функцию \( y=<^<2>>\) \( \left( a=1,\text< >b=0,\text< >c=0 \right)

\), чтобы убедиться в обратном: ведь какое бы число мы не возводили в квадрат, результат всегда будет больше или равен нулю.

Значит, эта функция всегда не меньше нуля.

А вот больше нуля она может быть сколько угодно: ведь бесконечно большой x в квадрате будет еще больше.

Таким образом, можем написать для \( y=<^<2>>:E\left( y \right)=\left[ 0;+\infty \right)\).

В каждом отдельном случае область значений будет разная, но всегда – ограниченная.

График квадратичной функции

Наверняка ты слышал, что график квадратичной функции называется параболой. Как она выглядит? Сейчас нарисуем

Кстати мы очень подробно разобрали как быстро и правильно рисовать параболу. Переходи по ссылке и всему научишься.

Начнем с простейшей квадратичной функции – \( y=<^<2>>\).

Составим таблицу значений:

x-2-1012
y41014

Нарисуем эти точки на координатной плоскости и соединим их плавной линией:

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Именно так и выглядит парабола. Самая нижняя ее точка называется вершиной, а части спарва и слева от вершины называем ветвями параболы. Как видим, ветви симметричны относительно вертикали, проходящей через вершину.

Рассмотрим теперь другую функцию: \( y=<^<2>>-2-3\).

Составим таблицу значений:

x-2-101234
y50-3-4-305

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Сравним два рисунка.

Видно, что это как будто одна и та же парабола, просто расположенная в разных местах.

Во второй параболе вершина переместилась в точку \( \left( 1;-4 \right)\), а ветви переехали вместе с ней.

Да, так оно и есть: все параболы с одинаковым старшим коэффициентом, a выглядят одинаково – даже при разных остальных коэффициентах.

Кстати, если хочешь научиться быстро и правильно рисовать график квадратичной функции, то переходи по ссылке, там отличная статья.

Коэффициенты квадратичной функции

Давай разберем, на что влияют коэффициенты квадратичной функции.
Начнем со старшего коэффициента.
Будем рассматривать функции вида \( y=a<^<2>>\) (\( b=0\), \( c=0\) – пусть не мешают).

Что ты видишь? Чем они отличаются? Какую закономерность можно заметить?

Во-первых, это невозможно не заметить, если \( \displaystyle \mathbf \mathbf<0>\) – вверх.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Значит, если парабола пересекает ось \( \displaystyle Ox\) в двух точках, то у нас два корня квадратного уравнения.

Если не пересекает – корней нет.

Но бывает ведь, что дискриминант уравнения равен нулю, и тогда только один корень. В этом случае парабола касается оси \( \displaystyle Ox\) вершиной:

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

А что такое вершина параболы?

Вершина параболы

Корень уравнения в этом случае указывает на вершину параболы. Если вспомнить формулу корня квадратного уравнения при \( \displaystyle D=0\), получим формулу вершины:

Это тоже бывает очень полезно.

Итак, всего возможны шесть разных вариантов расположения параболы. Вот они все на одном рисунке:

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

А теперь порешаем задачки.

Решение задач

1. График какой из функций избражен на рисунке?

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

2. Найдите сумму корней квадратного уравнения \( a<^<2>>+bx+c=0\), если на рисунке приведен график функции \( y=a<^<2>>+bx+c\):

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

3. Найдите произведение корней квадратного уравнения \( a<^<2>>+bx+c=0\), если на рисунке приведен график функции \( y=a<^<2>>+bx+c\):

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

4. По графику функции \( y=<^<2>>+bx+c\) определите коэффициенты \( b\) и \( c\):

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Решения

1. Первое: куда «смотрят» ветви параболы? Вниз. А что это значит? Правильно, \( \displaystyle a

Преобразования графиков функций (ЕГЭ 18. Задачи с параметром)

Научились строить график какой-то функции? А что, если я теперь поменяю один из коэффициентов? Или «заключу» часть функции в модуль?

Можно ли не строить для этого новый график, а просто передвинуть/растянуть старый?

Можно! И на этом уроке мы научимся производить такие трансформации.

Благодаря таким трансформациям мы станем понимать, как выглядят графики функций при всех значениях параметра и научимся решать задачи из ЕГЭ на эту тему.

Источник

Парабола, график, вершина, нули.

теория по математике 📈 функции

Функция вида y=ax 2 +bx+c, где а, b, с – некоторые числа, причем, а ≠ 0 число, х – переменная, называется квадратичной функцией.

Графиком квадратичной функции является парабола, она имеет вершину и две ветви, которые могут быть направлены либо вверх, либо вниз (рис.1). Красной точкой обозначена вершина параболы, из которой выходят ветви. Её координаты по графику – (3; –4). Направление ветвей зависит от значения коэффициента «а», то есть, если «а» – положительное число, то ветви направлены вверх; если число «а» – отрицательное, то ветви направлены вверх. На данном рисунке ветви направлены вверх, значит коэффициент «а» у формулы, которая задает эту функцию – положительное число. Коэффициент «с» показывает ординату (у) точки пересечения ветви параболы с осью у. Так, на рисунке №1 парабола пересекает ось у в точке (5;0), значит коэффициент с=5.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Чтобы найти координаты вершины параболы (х0; у0), надо воспользоваться формулой:

для нахождения у0 можно просто подставить значение х0 в формулу данной функции y0=ax 2 +bx+c вместо х.

Рассмотрим это на примере конкретно заданной функции.

Пример №1

Найти вершину параболы, заданной формулой у=2х 2 – 8х + 5.

Найдем, чему равны коэффициенты: а=2; b= – 8

Подставим их в формулу и вычислим значение х0:

Теперь в заданную по условию формулу вместо х подставим найденное значение у0=2 ∙ 2 2 – 8 ∙ 2 + 5=8 – 16 + 5= –3

Итак, мы нашли координаты вершины параболы: (2; –3).

Значения х, при которых функция принимает значения, равные нулю, называются нулями функции. Другими словами, Значения абсцисс (х) точек пересечения ветвей параболы с осью х, называются нулями функции. На рисунке №1 точки координаты точек пересечения ветвей параболы с осью х следующие: (1;0) и (5;0). Значит, нули функции – это значения х, равные 1 и 5.

Рассмотрим, как найти нули функции не по рисунку, а по заданной формуле.

Пример №2

Найти нули функции у=х 2 +4х – 5

Так как нули функции это абсциссы точек пересечения ветвей параболы с осью х, то их координаты будут (х;0), то есть у=0. Значит, вместо у подставляем нуль в нашу формулу 0=х 2 +4х – 5 и получаем квадратное уравнение, решив которое, мы и найдем значения нулей функции:

D=b 2 – 4ac=4 2 — 4 ∙ 1 ∙ ( − 5 ) = 36

Значит, нули функции равны –5 и 1

Примечание к заданию по нахождению нулей функции без графика

Если дискриминант уравнения отрицательный, значит, нулей функции нет, то есть парабола не пересекает ось х (вершина находится выше неё, если ветви направлены вверх и ниже, если ветви направлены вниз).

Рассмотрим нахождение соответствия рисунков парабол, расположенных в системе координат значениям а и с.

Пример №3

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Для выполнения данного задания на соответствие необходимо сначала поработать с графиками, подписав на них, какими – отрицательными или положительными являются коэффициенты а и с.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Теперь можно выполнить соответствие:

Пример №4

Рассмотрим еще пример на соответствие

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

В данном задании рассмотрим коэффициенты в формулах и подчеркнем их: так, в формуле под буквой А коэффициент а=-2, т.е. отрицательный, значит, ветви направлены вниз, а это график под номером 2. В формулах под буквами Б и В первые и третьи коэффициенты одинаковые, значит, сравнить по рисунку их невозможно, следовательно, будем сравнивать по расположению вершины (справа или слева от оси у), а именно х0. Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Итак, найдем х0 для формулы «Б»:

Видим, что х0 отрицательное, значит, вершина расположена слева от оси у, а это рисунок 3. Ну и осталось привести в соответствие В и 1.

А) a>0, с >0 Б) а 0 В) а>0, с

На рисунках в задании изображены параболы. Вспомним, что обозначают коэффициенты а и с: а – направление ветвей (a 0 – ветви вверх); коэффициент с показывает ординату точку пересечения параболы с осью х (с >0 – пересечение в положительном направлении; с 0, с >0 — это график №1

Б) а 0 — это график №3

pазбирался: Даниил Романович | обсудить разбор | оценить

Установите соответствие между функциями и их графиками.

ФУНКЦИИ

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Сразу обратим внимание на вариант В. Эта функция единственная, имеющая положительный коэффициент при х 2 (здесь а=1, т.е. а>0). При а>0 график параболы направлен ветками вверх. Такой график имеется только один – под №3. Кроме того, можно обратить внимание на коэфициент с. Она равен 3, т.е. с>0. Это указывает на то, что парабола должна пересечь ось Оу выше начала координат. Что и отображено на графике В. Получаем соответствие: В–3.

Оба других графика – 1-й и 2-й – пересекают ось Оу ниже начала координат, что соответствует значению с=–3

pазбирался: Даниил Романович | обсудить разбор | оценить

На рисунках изображены графики функций вида

Установите соответствие между знаками коэффициентов a и c и графиками функций.

Мы вспоминаем, за что отвечают коэффициенты a и b при построении графиков функции вида

Коэффициент a определяет направление ветвей параболы: если a > 0, то ветви направлены вверх, а если a 0.

Далее мы смотрим, на что влияет коэффициент c.

Коэффициент c отвечает за положение параболы относительно оси x, или же отвечает за сдвиг по оси y, а именно:

если c > 0, то вершина параболы расположена выше оси х

Из всего вышеперечисленного можно найти ответ:

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Квадратичная функция и её график

Парабола является графиком квадратичной функции, которая задается формулой y = ax 2 + bx + c.

Нарисовать параболу можно, используя таблицу значений, в которой мы выбираем произвольный х и находим у. Но не всегда этот способ является самым рациональным.

Начнем, как всегда, с простого)

Стандартная парабола.

На координатной плоскости отмечаем эти точки и чертим параболу.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Начало координат тоже является вершиной этой параболы, как и в предыдущем случае, но ветви уже будут направлены вниз:

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Если у тебя черный пояс по рисованию стандартных парабол, то следующий раздел пройдет у тебя «на ура».

Параболы со смещенной вершиной.

Зачем я начала статью со стандартной параболы? Ответ прост. Графиком любой квадратичной функции y = ±x 2 + bx + c (обязательно коэффициент перед х 2 должен равняться ±1) является стандартной параболой, только вот вершины этих парабол не будут находится в начале координат.

Чтобы начертить подобные параболы нужно сначала узнать, где находится вершина.

Пусть вершиной параболы будет точка О с координатами (x1; y1). Тогда найти эти координаты можно по формулам:

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Кстати, можно найти координаты вершины и другим способом.

Координату хО находим по той же формуле, а координату уО можно найти подстановкой координаты хО в функцию.

Без примера не обойтись)

Найдем сначала вершину параболы двумя способами, чтобы убедится, что оба способа рабочие.

1 способ: по формулам.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

2 способ: подстановкой.

Одну координаты мы уже нашли по формуле. Подставляем ее в исходную функцию.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Параболы-стройняшки и параболы-пухляшки.

Удивительно, но числовой коэффициент перед х 2 оказывается влияет на стройность и полноту парабол.

Если числовой коэффициент лежит в промежутке (-1; 0) ∪ (0; 1), то парабола будет более обширно смотреться на координатной плоскости.

Не веришь? Давай проверим! Для примера возьмем две функции:

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

К сожалению, здесь схитрить не получится: обе параболы нестандартные и для обеих необходимо создать таблицы значений. Но перед эти определимся с их вершинами.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Переходим к таблицам значений.

x02 468
y36763
x-1,5-1 -0,2501
y-314,53-3

Чертим обе параболы по получившимся координатам.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Вот о чем я и говорила) Перед тобой парабола-стройняшка и парабола-пухляшка во всей красе.

Практикум по параболам.

Теорию о параболах можно еще писать и дальше, но тебя, скорее всего, интересует практика по графикам.

Поскольку речь идет о параболах, то с параболами мы и будем сейчас возиться.

Задание 1. На рисунке изображены графики функций вида y = ax 2 ​+ bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

А) Если коэффициент а положителен, то ветви направлены вверх; если коэффициент с отрицателен, то график пересекает ось Оу ниже нуля. Подходит график 1.

Б) Если коэффициент а отрицателен, то ветви направлены вниз; если коэффициент с положителен, то график пересекает ось Оу выше нуля. Подходит график 3.

В) Если коэффициент а положителен, то ветви направлены вверх; если коэффициент с положителен, то график пересекает ось Оу выше нуля. Подходит график 2.

Задание 2 (наоборот). На рисунке изображены графики функций вида y = ax 2 ​+ bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

А) Ветви направлены вверх, значит а > 0; график пересекает ось Оу выше нуля, значит и с > 0. Подходит вариант под номером 3.

Б) Ветви направлены вверх, значит а > 0; график пересекает ось Оу ниже нуля, значит и с 0. Подходит вариант под номером 2.

Задание 3. Установите соответствие между графиками и их функциями.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

Дальше рекомендую отработанную годами технику. Она минимизирует твои ошибки, если ты, конечно, умеешь считать)

Задание 4 (наоборот, но принципе тот же). Установите соответствие между функциями и их графиками.

Что показывает коэффициент с в квадратичной функции на графике. Смотреть фото Что показывает коэффициент с в квадратичной функции на графике. Смотреть картинку Что показывает коэффициент с в квадратичной функции на графике. Картинка про Что показывает коэффициент с в квадратичной функции на графике. Фото Что показывает коэффициент с в квадратичной функции на графике

На графике 1 выбираем точку. Вершина снова четкая, но для разнообразия давайте возьмем другую точку, например, точку с координатами (-4; 1). Будь внимателен и смотри, чтобы точно такой же точки не было на третьем графике!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *