Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΡƒΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

тСория ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ 🧲 ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°

ГСомСтричСский смысл пСрСмСщСния Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΅ΡΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости, осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ прямыми, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌΠΈ пСрпСндикулярно ΠΊ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π° двиТСния.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ опрСдСляСтся ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, основаниями ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ слуТат ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости Ρ‚Π΅Π»Π°, Π° Π΅Π΅ Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌΠΈ сторонами β€” ось Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ скорости соотвСтствСнно. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ (ΠΏΡƒΡ‚ΡŒ) ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=3 с.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΅ΡΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ скорости, осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ пСрпСндикулярами, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΊ Π½Π΅ΠΉ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² нашСм случаС:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ИзвлСкаСм ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ 0, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Π΅Π»ΠΎ сначала ΠΏΡ€ΠΎΠ΄Π΅Π»Π°Π»ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ, Π° Π·Π°Ρ‚Π΅ΠΌ Π²Π΅Ρ€Π½ΡƒΠ»ΠΎΡΡŒ Π² исходноС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅.

Π’Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ записи Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ пСрСмСщСния

ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ‚Π΅Π»Π° часто нСизвСстна. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ вмСсто Π½Π΅Π΅ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π’ ΠΈΡ‚ΠΎΠ³Π΅ получаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Если Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅, Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π·Π½Π°ΠΊ «–». Если Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ равноускорСнноС, оставляСтся Π·Π½Π°ΠΊ Β«+Β».

Если Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½Π° 0 (v0 = 0), эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Если нСизвСстно врСмя двиТСния, Π½ΠΎ извСстно ускорСниС, Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΈ конСчная скорости, Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2. Найти Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡƒΡ‚ΡŒ автомобиля, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°Ρ‡Π°Π» Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈ скорости 72 ΠΊΠΌ/Ρ‡. Π’ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠΉ остановки заняло 3 сСкунды. ΠœΠΎΠ΄ΡƒΠ»ΡŒ ускорСния ΠΏΡ€ΠΈ этом составил 2 ΠΌ/с.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π·Π³ΠΎΠ½Π΅ ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π°

ВсС пСрСчислСнныС Π²Ρ‹ΡˆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚, Ссли Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ ( Π° ↑↑ v ). Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ( Π° ↑↓ v ), Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ слСдуСт ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ Π² Π΄Π²Π° этапа:

Π­Ρ‚Π°ΠΏ тормоТСния

ВрСмя тормоТСния Ρ€Π°Π²Π½ΠΎ разности ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ этапа:

Когда Ρ‚Π΅Π»ΠΎ Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚, Ρ‡Π΅Ρ€Π΅Π· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ врСмя t1ΠΎΠ½ΠΎ останавливаСтся. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t1 Ρ€Π°Π²Π½Π° 0:

ΠŸΡ€ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ s1 Ρ€Π°Π²Π½ΠΎ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π­Ρ‚Π°ΠΏ Ρ€Π°Π·Π³ΠΎΠ½Π°

ВрСмя Ρ€Π°Π·Π³ΠΎΠ½Π° Ρ€Π°Π²Π½ΠΎ разности ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ этапа:

Π’Π΅Π»ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Ρ€Π°Π·Π³ΠΎΠ½ΡΡ‚ΡŒΡΡ сразу послС прСодолСния Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ значСния скорости, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t2 Ρ€Π°Π²Π½Π°:

ΠŸΡ€ΠΈ Ρ€Π°Π·Π³ΠΎΠ½Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ s2 Ρ€Π°Π²Π½ΠΎ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈ этом ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ всСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния Ρ€Π°Π²Π΅Π½:

ΠŸΠΎΠ»Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ (ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Π΅Π³ΠΎ l), ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ Π·Π° ΠΎΠ±Π° этапа, Ρ€Π°Π²Π΅Π½:

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Π΄Π²Π° этапа, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊ сначала разогнался, ΠΏΠΎΡ‚ΠΎΠΌ Π·Π°Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΠ». Π’ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡƒΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ этапу. Π§Π΅Ρ€Π΅Π· Π½Π΅Π³ΠΎ ΠΌΡ‹ Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ ускорСниС:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Из ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ этапа (Ρ€Π°Π·Π³ΠΎΠ½Π°) ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, которая послуТит для Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ этапа Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π² n-Π½ΡƒΡŽ сСкунду прямолинСйного равноускорСнного двиТСния

Иногда Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π·Π°Π΄Π°Ρ‡ΠΈ, ΠΊΠΎΠ³Π΄Π° Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π·Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Ρ‚Π΅Π»ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ· состояния покоя. Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π—Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ сСкунду Ρ‚Π΅Π»ΠΎ пСрСмСстится Π½Π° расстояниС, Ρ€Π°Π²Π½ΠΎΠ΅:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π—Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду Ρ‚Π΅Π»ΠΎ пСрСмСстится Π½Π° расстояниС, Ρ€Π°Π²Π½ΠΎΠ΅ разности пСрСмСщСния Π·Π° 2 сСкунды ΠΈ пСрСмСщСния Π·Π° 1 сСкунду:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π—Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ сСкунду Ρ‚Π΅Π»ΠΎ пСрСмСстится Π½Π° расстояниС, Ρ€Π°Π²Π½ΠΎΠ΅ разности пСрСмСщСния Π·Π° 3 сСкунды ΠΈ пСрСмСщСния Π·Π° 2 сСкунды:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π·Π° ΠΊΠ°ΠΆΠ΄ΡƒΡŽ сСкунду Ρ‚Π΅Π»ΠΎ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅, ΠΊΡ€Π°Ρ‚Π½ΠΎΠ΅ Ρ†Π΅Π»ΠΎΠΌΡƒ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠΌΡƒ числу:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Из Ρ„ΠΎΡ€ΠΌΡƒΠ» ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ Π·Π° 1, 2 ΠΈ 3 сСкунду ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ: ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π·Π° n-Π½ΡƒΡŽ сСкунду Ρ€Π°Π²Π½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ произвСдСния модуля ускорСния Π½Π° (2n–1), Π³Π΄Π΅ n β€” сСкунда, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ ΠΈΡ‰Π΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈ это записываСтся Ρ‚Π°ΠΊ:

Π€ΠΎΡ€ΠΌΡƒΠ»Π° пСрСмСщСния Π·Π° n-Π½ΡƒΡŽ сСкунду

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–4. ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ разгоняСтся с ускорСниСм 3 ΠΌ/с 2. Найти Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π·Π° 6 сСкунду.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π°ΠΊΠΈΠΌ ΠΆΠ΅ способом ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π½Π΅ Π·Π° 1 сСкунду, Π° Π·Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ: Π·Π° 2, 3, 4 сСкунды ΠΈ Ρ‚. Π΄. Π’ этом случаС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π³Π΄Π΅ t β€” врСмя ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°, Π° n β€” порядковый Π½ΠΎΠΌΠ΅Ρ€ этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°.

ВрСмя ΠΎΡ‚ 4 Π΄ΠΎ 6 сСкунд Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ β€” это 3 сСкунды: 4-ая, 5-ая ΠΈ 6-ая. Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ составляСт 3 сСкунды. Π”ΠΎ наступлСния этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° успСло ΠΏΡ€ΠΎΠΉΡ‚ΠΈ Π΅Ρ‰Π΅ 3 сСкунды. Π—Π½Π°Ρ‡ΠΈΡ‚, врСмя ΠΎΡ‚ 4 Π΄ΠΎ 6 сСкунд β€” это Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎ счСту Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ пСрСмСщСния Π½Π° ось ОΠ₯. Π“Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния β€” это Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости пСрСмСщСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ пСрСмСщСния ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ являСтся Π²Π΅Ρ‚ΠΊΠ° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π“Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π² сторону оси ОΠ₯ ( v ↑↑OX), Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΈ ускорСния сонаправлСны ( v ↑↑ a ), ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊ пСрСмСщСния ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π² сторону оси ОΠ₯ (v↑↑OX), Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΈ ускорСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ ( v ↓↑ a ), ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ направлСния Π·Π½Π°ΠΊΠ° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ускорСния ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Π΅Π³ΠΎ пСрСмСщСния:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–6. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ускорСниС Ρ‚Π΅Π»Π° ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Π΅Π³ΠΎ пСрСмСщСния.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=0 с соотвСтствуСт Π½ΡƒΠ»ΡŽ. Π—Π½Π°Ρ‡ΠΈΡ‚, ускорСниС ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ пСрСмСщСния Π±Π΅Π· Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ускорСния. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π΅ΠΏΠ΅Ρ€ΡŒ возьмСм Π»ΡŽΠ±ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. ΠŸΡƒΡΡ‚ΡŒ ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=2 с. Π­Ρ‚ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ соотвСтствуСт ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ 30 ΠΌ. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² случаС равноускорСнного двиТСния совпадаСт с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ s = l.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’ случаС с Ρ€Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ прСдставляСт собой линию, ΠΏΠΎΠ΄Π΅Π»Π΅Π½Π½ΡƒΡŽ Π½Π° 2 части:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° (Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΠΉ) ΠΎΠ±ΡŠΡΡΠ½ΡΠ΅Ρ‚ΡΡ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡƒΡ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒΡΡ β€” ΠΎΠ½ Π»ΠΈΠ±ΠΎ Π½Π΅ мСняСтся (Π² состоянии покоя), Π»ΠΈΠ±ΠΎ растСт нСзависимо ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Π² ΠΊΠ°ΠΊΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, с ΠΊΠ°ΠΊΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΈ с ΠΊΠ°ΠΊΠΈΠΌ ускорСниСм двиТСтся Ρ‚Π΅Π»ΠΎ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–7. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΡƒΡ‚ΠΈ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌΡƒ равноускорСнному прямолинСйному двиТСнию, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ускорСниС Ρ‚Π΅Π»Π°.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΏΡƒΡ‚ΠΈ являСтся Π²Π΅Ρ‚Π²ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ наш Π³Ρ€Π°Ρ„ΠΈΠΊ β€” красный. Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡƒΡ‚ΠΈ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π°ΠΊΠΆΠ΅ совпадаСт с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π΅Π³ΠΎ ускорСния. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для вычислСния ускорСния ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Для расчСта возьмСм Π»ΡŽΠ±ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. ΠŸΡƒΡΡ‚ΡŒ ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t=2 c. Π•ΠΉ соотвСтствуСт ΠΏΡƒΡ‚ΡŒ, Ρ€Π°Π²Π½Ρ‹ΠΉ 5 ΠΌ. Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π²Π½ΠΎ 5 ΠΌ. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ извСстныС Π΄Π°Π½Π½Ρ‹Π΅ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Π’Π΅Π»ΠΎ массой 200 Π³ двиТСтся вдоль оси ΠžΡ…, ΠΏΡ€ΠΈ этом Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° измСняСтся Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² соотвСтствии с Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ Ρ…(t) = 10 + 5t – «>– 3t 2 (всС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π² БИ).

УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ физичСскими Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΌΠΈ ΠΈΡ… зависимости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² условиях Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ.

К ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ столбца ΠΏΠΎΠ΄Π±Π΅Ρ€ΠΈΡ‚Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ ΠΈΠ· Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ столбца ΠΈ Π·Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Π΅ Ρ†ΠΈΡ„Ρ€Ρ‹ ΠΏΠΎΠ΄ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ.

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

РСшСниС

Из условия Π·Π°Π΄Π°Ρ‡ΠΈ извСстна Ρ‚ΠΎΠ»ΡŒΠΊΠΎ масса Ρ‚Π΅Π»Π°: m = 200 Π³ = 0,2 ΠΊΠ³.

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Π΅Π»ΠΎ двиТСтся вдоль оси Ox, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ прямолинСйном равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ :

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ кинСматичСскиС характСристики двиТСния Ρ‚Π΅Π»Π°:

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π½Π΅ учитываСтся, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ это расстояниС Π±Ρ‹Π»ΠΎ ΡƒΠΆΠ΅ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½ΠΎ Π΄ΠΎ Π½Π°Ρ‡Π°Π»Π° отсчСта Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ:

ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энСргия Ρ‚Π΅Π»Π° опрСдСляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ прямолинСйном равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ€Π°Π²Π½Π°:

v = v 0 + a t = 5 βˆ’ 6 t

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ кинСтичСская энСргия Ρ‚Π΅Π»Π° Ρ€Π°Π²Π½Π°:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ†ΠΈΡ„Ρ€ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ Π±ΡƒΠ΄Π΅Ρ‚: 34.

pазбирался: Алиса Никитина | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

На рисункС ΠΏΠΎΠΊΠ°Π·Π°Π½ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ x Ρ‚Π΅Π»Π°, двиТущСгося вдоль оси ΠžΡ…, ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t (ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°). Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ А ΠΈ Π‘ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой зависимости физичСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ этого Ρ‚Π΅Π»Π°, ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t. УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ ΠΈ физичСскими Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, зависимости ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ эти Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ.

К ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΠΎΠ΄Π±Π΅Ρ€ΠΈΡ‚Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ утвСрТдСния ΠΈ Π·Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π² ΠΏΠΎΠ»Π΅ Ρ†ΠΈΡ„Ρ€Ρ‹ Π² порядкС АБ.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

РСшСниС

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π² случаС, ΠΊΠΎΠ³Π΄Π° это Ρ‚Π΅Π»ΠΎ двиТСтся равноускорСнно. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° описываСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ΠžΡ…, Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ являСтся прямая. РавноускорСнноС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ характСризуСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ:

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΡƒΡ‚ΡŒ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚Π΅Π»Π°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΈΡ… зависимости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ‚ΠΎΠΆΠ΅ ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ равноускорСнном прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ прямой, которая Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π“Ρ€Π°Ρ„ΠΈΠΊ зависимости ускорСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ прямой, пСрпСндикулярной оси ускорСния ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ускорСниС Π² этом случаС β€” Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° постоянная.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· этого, ΠΎΡ‚Π²Π΅Ρ‚ Β«3Β» ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ. ΠžΡΡ‚Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚ Β«1Β». ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ энСргия Ρ€Π°Π²Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ произвСдСния массы Ρ‚Π΅Π»Π° Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΅Π³ΠΎ скорости. Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΎΡ‚Π²Π΅Ρ‚ Β«1Β» Ρ‚ΠΎΠΆΠ΅ Π½Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚.

Π“Ρ€Π°Ρ„ΠΈΠΊ А β€” прямая линия, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠœΡ‹ установили, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠΌΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ускорСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (ΠΈΠ»ΠΈ Π΅Π³ΠΎ модуля). ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ пСрвая Ρ†ΠΈΡ„Ρ€Π° ΠΎΡ‚Π²Π΅Ρ‚Π° β€” Β«4Β».

Π“Ρ€Π°Ρ„ΠΈΠΊ Π‘ β€” прямая линия, Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠœΡ‹ установили, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠΌΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (ΠΈΠ»ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ). ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ вторая Ρ†ΠΈΡ„Ρ€Π° ΠΎΡ‚Π²Π΅Ρ‚Π° β€” Β«2Β».

pазбирался: Алиса Никитина | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

pазбирался: Алиса Никитина | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

Алгоритм Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

РСшСниС

Π’Π΅ΡΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° 3 участка:

По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ΠΈ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΌ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ t1 = 20 c Π΄ΠΎ t2 = 50 с. Π­Ρ‚ΠΎΠΌΡƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° участка:

ЗаписываСм Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ искомой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹:

s1 β€” ΠΏΡƒΡ‚ΡŒ Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ участкС, s2 β€” ΠΏΡƒΡ‚ΡŒ Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌ участкС.

s1ΠΈ s2 ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡƒΡ‚ΠΈ для Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΈ равноускорСнного двиТСния соотвСтствСнно:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π΅ΠΏΠ΅Ρ€ΡŒ рассчитаСм ΠΏΡƒΡ‚ΠΈ s1ΠΈ s2, Π° Π·Π°Ρ‚Π΅ΠΌ слоТим ΠΈΡ…:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

pазбирался: Алиса Никитина | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ВсСго ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ ΠΎΡ†Π΅Π½ΠΎΠΊ: 124.

ВсСго ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ ΠΎΡ†Π΅Π½ΠΎΠΊ: 124.

Одним ΠΈΠ· Π²ΠΈΠ΄ΠΎΠ² двиТСния, ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΉ, являСтся равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β€” это достаточно распространённый Π²ΠΈΠ΄ двиТСния, Π΄Π°ΠΆΠ΅ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Π½Π°Ρ‡ΠΈΠ½Π°Π»ΠΈΡΡŒ с Ρ€Π°Π·Π³ΠΎΠ½Π° ΠΈ Π±Ρ‹Π»ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ врСмя равноускорСнными. Рассмотрим эту Ρ‚Π΅ΠΌΡƒ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ равноускорСнного двиТСния, ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ‚Π°ΠΊΠΎΠ³ΠΎ двиТСния.

УскорСниС

Если Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ‚Π΅Π»ΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ· состояния покоя, Ρ‚ΠΎ Π΅Π³ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСняСтся ΠΎΡ‚ нуля Π΄ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ максимального значСния. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ быстроту измСнСния скорости.

НапримСр, Π² Ρ€Π΅ΠΊΠ»Π°ΠΌΠ΅ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ указываСтся врСмя Ρ€Π°Π·Π³ΠΎΠ½Π° Π΄ΠΎ 100 ΠΊΠΌ/Ρ‡. Ясно, Ρ‡Ρ‚ΠΎ модСль, Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‰Π°Ρ Ρ‚Π°ΠΊΠΎΠΉ скорости Π·Π° 5 сСкунд, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π΅Π·Π²Π΅Π΅, Ρ‡Π΅ΠΌ модСль со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ Ρ€Π°Π·Π³ΠΎΠ½Π° 15 сСкунд, хотя конСчная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² ΠΎΠ±ΠΎΠΈΡ… случаях ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°. Π’ Ρ‡Π΅ΠΌ ΠΆΠ΅ здСсь Ρ€Π°Π·Π½ΠΈΡ†Π°, с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ?

Из Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ускорСния. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСряСтся Π² ΠΌΠ΅Ρ‚Ρ€Π°Ρ… Π² сСкунду, Π° врСмя β€” Π² сСкундах, Π·Π½Π°Ρ‡ΠΈΡ‚, ускорСниС измСряСтся Π² ΠΌΠ΅Ρ‚Ρ€Π°Ρ… Π² сСкунду Π·Π° сСкунду (ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π² сСкунду Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅).

Π’ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ разгоняСтся с ускорСниСм 5,56 ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π² сСкунду Π·Π° сСкунду, Π° Π²Ρ‚ΠΎΡ€ΠΎΠΉ β€” с ускорСниСм 1,85 ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π² сСкунду Π·Π° сСкунду.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС двиТСниСРис. 1. УскорСниС Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅.

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ускорСниС Ρ‚Π΅Π»Π° постоянно, называСтся равноускорСнным. ΠŸΡ€ΠΈ этом Π·Π½Π°ΠΊ ускорСния Π½Π΅ ΠΈΠ³Ρ€Π°Π΅Ρ‚ Ρ€ΠΎΠ»ΠΈ. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ с постоянным ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ускорСниСм Ρ‚Π°ΠΊΠΆΠ΅ являСтся равноускорСнным, нСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

НаиболСС частым ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ равноускорСнного двиТСния являСтся свободноС ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π» Π² ΠΏΠ΅Ρ€Π²Ρ‹Π΅ сСкунды, ΠΊΠΎΠ³Π΄Π° сопротивлСниС Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π΅Ρ‰Ρ‘ Π½Π΅ ΠΈΠ³Ρ€Π°Π΅Ρ‚ большой Ρ€ΠΎΠ»ΠΈ. Π”Ρ€ΡƒΠ³ΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ Ρ€Π°Π·Π³ΠΎΠ½ автомобиля ΠΏΡ€ΠΈ постоянном Π½Π°ΠΆΠ°Ρ‚ΠΈΠΈ Π½Π° пСдаль Β«Π³Π°Π·Π°Β», ΠΏΠΎΠΊΠ° Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Π±Ρ€Π°Π½Π° нСобходимая ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ.

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ равноускорСнного двиТСния

Найдём Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ скорости ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Из ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠ³ΠΎ Π²Ρ‹ΡˆΠ΅ опрСдСлСния ускорСния слСдуСт, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ постоянном ускорСнии Ρ€Π°Π²Π½Π°:

$$\overrightarrow v= \overrightarrow + \overrightarrow a t$$

$$\overrightarrow x= <(\overrightarrow + \overrightarrow v)\over 2> t$$

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ ΠΌΡ‹ ΡƒΠ·Π½Π°Π»ΠΈ?

УскорСниС β€” это физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ быстроту Π½Π°Π±ΠΎΡ€Π° скорости ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ с постоянным ускорСниСм называСтся равноускорСнным. Π₯ΠΎΡ€ΠΎΡˆΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ равноускорСнного двиТСния являСтся свободноС ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π».

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅: понятиС Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅

РавноускорСнным Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π·Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся Π½Π° ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ.

ΠŸΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π’Ρ‹Π²Π΅Π΄Π΅ΠΌ эту Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ, которая ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ ΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Π—Π°ΠΊΠΎΠ½ зависимости Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ скорости ΠΌΠΎΠΆΠ½ΠΎ вывСсти ΠΈΠ· опрСдСлСния ускорСния:

ΠžΡΡ‚ΠΎΡ€ΠΎΠΆΠ½ΠΎ! Если ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚ Π² Ρ€Π°Π±ΠΎΡ‚Π΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ отчислСния). Если Π½Π΅Ρ‚ возмоТности Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ самому, Π·Π°ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‚ΡƒΡ‚.

Π“Π΄Π΅ \(\vec v\) β€” тСкущая ΠΈΠ»ΠΈ конСчная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ; \(\vec v_0\) β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ; t β€” ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

НайдСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для \( \vec v\) ΠΈΠ· ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π²Ρ‹ΡˆΠ΅ равСнства:

\(\vec v=\vec v+\vec a\times t\) β€” Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½Π° зависимости скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ.

Π’ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π° ось Ρ…, Π·Π°ΠΊΠΎΠ½ Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Π₯арактСристики равноускорСнного двиТСния

Π₯арактСристиками равноускорСнного двиТСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ \((\vec v)\) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΡƒΡŽ быстроту ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ двиТСния.

БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π“Π΄Π΅ \(\Delta\vec r\) β€” ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ осущСствило Ρ‚Π΅Π»ΠΎ, \(\Delta t\) β€” врСмя, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΡΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ это ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅.

ΠœΠ³Π½ΠΎΠ²Π΅Π½Π½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° \(\Delta t\) стрСмится ΠΊ Π½ΡƒΠ»ΡŽ, Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния \((\vec r)\) совпадаСт с ΠΏΡƒΡ‚Π΅ΠΌ (расстояниСм) пСрСмСщСния \((\vec s)\) :

УскорСниСм Ρ‚Π΅Π»Π° \((\vec a)\) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ€Π°Π²Π½ΡƒΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ измСнСния скорости ΠΊ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΡƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ это ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости ΡΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ.

РасчСт Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ производится ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

УскорСниС называСтся ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ срСднСС ускорСниС Π·Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ стрСмится ΠΊ Π½ΡƒΠ»ΡŽ:

ПолноС ускорСниС ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ Π΅Π³ΠΎ разлоТСния

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ равноускорСнного двиТСния

Для равноускорСнного двиТСния Π²Π΅Ρ€Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ уравнСния для нахоТдСния ускорСния, скорости, Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΏΡƒΡ‚ΠΈ:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

I. ΠœΠ΅Ρ…Π°Π½ΠΈΠΊΠ°

ВСстированиС ΠΎΠ½Π»Π°ΠΉΠ½

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ЀизичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ Ρ‚ΠΎ, Π½Π° сколько ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Ρ€Π°Π· увСличиваСтся ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ называСтся ускорСниСм.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

УскорСниС Ρ‚Π΅Π»Π°

Π­Ρ‚Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ‡Π°Ρ‰Π΅ всСго ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Π² Π²ΠΈΠ΄ΠΎΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

НаправлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния

НаправлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΎ Π½Π° рисунках

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

На этом рисункС машина двиТСтся Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ вдоль оси Ox, Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости всСгда совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ двиТСния (Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π²ΠΏΡ€Π°Π²ΠΎ). Когда Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСниС совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости, это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ машина разгоняСтся. УскорСниС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅.

ΠŸΡ€ΠΈ Ρ€Π°Π·Π³ΠΎΠ½Π΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ускорСния совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости. УскорСниС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅.

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

На этом рисункС машина двиТСтся Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΠΎ оси Ox, Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ двиТСния (Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π²ΠΏΡ€Π°Π²ΠΎ), ускорСниС НЕ совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости, это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ машина Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚. УскорСниС ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅.

ΠŸΡ€ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ускорСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ скорости. УскорСниС ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅.

РазбСрСмся, ΠΏΠΎΡ‡Π΅ΠΌΡƒ ΠΏΡ€ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ ускорСниС ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅. НапримСр, Ρ‚Π΅ΠΏΠ»ΠΎΡ…ΠΎΠ΄ Π·Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ сСкунду сбросил ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ с 9ΠΌ/с Π΄ΠΎ 7ΠΌ/с, Π·Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду Π΄ΠΎ 5ΠΌ/с, Π·Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ Π΄ΠΎ 3ΠΌ/с. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСняСтся Π½Π° «-2ΠΌ/с». 3-5=-2; 5-7=-2; 7-9=-2ΠΌ/с. Π’ΠΎΡ‚ ΠΎΡ‚ΠΊΡƒΠ΄Π° появляСтся ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ускорСния.

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡, Ссли Ρ‚Π΅Π»ΠΎ замСдляСтся, ускорСниС Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ подставляСтся со Π·Π½Π°ΠΊΠΎΠΌ «ΠΌΠΈΠ½ΡƒΡ».

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π±Π΅Π·Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Бвязь со срСднСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ

ΠŸΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ срСднСарифмСтичСскоС Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Из этого ΠΏΡ€Π°Π²ΠΈΠ»Π° слСдуСт Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΡ‡Π΅Π½ΡŒ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡƒΡ‚Π΅ΠΉ

Если Ρ‚Π΅Π»ΠΎ двиТСтся равноускорСнно, Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ нулСвая, Ρ‚ΠΎ ΠΏΡƒΡ‚ΠΈ, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, относятся ΠΊΠ°ΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ряд Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл.

Π“Π»Π°Π²Π½ΠΎΠ΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ

УпраТнСния

ПоСзд двиТСтся равноускорСнно с ускорСниСм a (a>0). Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊ ΠΊΠΎΠ½Ρ†Ρƒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ сСкунды ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ΅Π·Π΄Π° Ρ€Π°Π²Π½Π° 6ΠΌ/с. Π§Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΏΡƒΡ‚ΠΈ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠΌ Π·Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡƒΡŽ сСкунду? Π‘ΡƒΠ΄Π΅Ρ‚ Π»ΠΈ этот ΠΏΡƒΡ‚ΡŒ большС, мСньшС ΠΈΠ»ΠΈ Ρ€Π°Π²Π΅Π½ 6ΠΌ?

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΠ΅Π·Π΄ двиТСтся с ускорСниСм, Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ всС врСмя возрастаСт (a>0). Если ΠΊ ΠΊΠΎΠ½Ρ†Ρƒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ сСкунды ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½Π° 6ΠΌ/с, Ρ‚ΠΎ Π² Π½Π°Ρ‡Π°Π»Π΅ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ сСкунды ΠΎΠ½Π° Π±Ρ‹Π»Π° мСньшС 6ΠΌ/с. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΅Π·Π΄ΠΎΠΌ Π·Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡƒΡŽ сСкунду, мСньшС 6ΠΌ.

КакиС ΠΈΠ· ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… зависимостСй ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅? Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ скорости двиТущСгося Ρ‚Π΅Π»Π° Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Каково ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡƒΡ‚ΠΈ?

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

*ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ ΠΏΡ€ΠΎΡˆΠ΅Π» Π·Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ сСкунду 1ΠΌ, Π·Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду 2ΠΌ, Π·Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ сСкунду 3ΠΌ, Π·Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡƒΡŽ сСкунду 4ΠΌ ΠΈ Ρ‚.Π΄. МоТно Π»ΠΈ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ равноускорСнным?

Π’ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡƒΡ‚ΠΈ, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, относятся ΠΊΠ°ΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ряд Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, описанноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ равноускорСнноС.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *