Что получается при вычитании

Вычитание

Познакомимся с вычитанием.

Рассмотрим числовой ряд и вспомним, в каком порядке идут числа.

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Числа идут слева направо, по порядку, как при счёте.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Посмотри на числовой ряд, по которому идёт заяц.

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Какое действие выполняет заяц?

Вычитает число 6.

Из какого числа он вычитает число 6?

Из числа 9. Мы поставили зайчика на число 9.

В какую сторону он пойдёт?

Влево, потому что у него на табличке знак минус.

Сколько шагов влево сделает зайчик? 6.

На каком делении он остановится? На числе 3.

Когда вычитаем, становится меньше.

Чем левее, тем числа меньше.

Рассмотрим еще один пример.

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Какое действие выполняет заяц?

Вычитает число 3.

Из какого числа он вычитает число 3?

Из числа 7. Мы поставили зайчика на число 7.

В какую сторону он пойдёт?

Влево, потому что у него на табличке знак минус.

Сколько шагов влево сделает зайчик? 3.

На каком делении он остановится? На числе 4.

Когда вычитаем, становится меньше.

Чем левее, тем числа меньше.

Как называются числа при вычитании?

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Число, из которого вычитают, становится МЕНЬШЕ, уменьшается, поэтому его называют «уменьшаемое».

Число, которое вычитают, называют «вычитаемое».

Число, которое получается в результате вычитания, называют «разность».

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

У жонглёра было 9 шариков.

Когда несколько шариков упало, осталось ещё 5 шариков.

Сколько шариков упало?

Каким действием будем находить? Вычитанием.

Как называются числа при вычитании?

Как найти неизвестное вычитаемое

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

У жонглера было 9 шариков. Когда несколько шариков упало, осталось 5. Упали, значит, убрали.

Решаем вычитанием. Что нужно найти?

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Нужно найти вычитаемое.

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Как найти неизвестное уменьшаемое

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Нужно найти уменьшаемое.

Чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое.

5 + 4 = 9

Проверка вычитания

Если к разности прибавить вычитаемое, получится уменьшаемое.

Именно эта связь между разностью, уменьшаемым и вычитаемым используют для проверки вычитания.

Правильно ли произведено вычисление? Можно проверить так:

20 + 15 = 35, мы к разности прибавили вычитаемое и получили уменьшаемое. Значит, вычисление произведено верно и пример решен правильно.

Поделись с друзьями в социальных сетях:

Источник

Свойства сложения и вычитания

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Свойства сложения

Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число

Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.

Слагаемые — это числа, единицы которых складываются.

Сумма — это число, которое получается в результате сложения.

Рассмотрим пример 2 + 5 = 7, в котором:

При этом саму запись (2 + 5) можно тоже назвать суммой.

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.

Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.

Свойства вычитания

Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.

Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.

Уменьшаемое — это число, из которого вычитают.

Вычитаемое — это число, которое вычитают.

Разность — это число, которое получается в результате вычитания.

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Примеры использования свойств сложения и вычитания

Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Пример 1

Вычислить сумму слагаемых с использованием разных свойств:

а) 4 + 3 + 8 = (4 + 3) + 8 = 7 + 8 = 15

б) 9 + 11 + 2 = (9 + 2) + 11 = 11 + 11 = 22

в) 30 + 0 + 13 = 30 + 13 = 43

Пример 2

Применить разные свойства при вычислении разности:

Пример 3

Найти значение выражения удобным способом:

а) 11 + 10 + 3 + 9 = (11 + 10) + (3 + 9) = 21 + 11 = 32

Источник

Математика

Определение вычитания

Вычесть значит отнять одно число от другого.

Вычитание есть такое действие, в котором отнимают меньшее число от большего. При вычитании целых чисел большее число уменьшается на столько единиц, сколько их содержится в меньшем. Вычесть одно число из другого значит убавить одно число другим, поэтому вычитание есть действие обратное сложению.

Уменьшаемым называют большее число, от которого отнимают другое. Оно уменьшается от вычитания.

Вычитаемым называют меньшее число, которое отнимают от большего.

Разностью называют вывод, полученный от вычитания. Разность определяет, чем одно число больше другого или показывает разницу между двумя числами.

Знак вычитания. Действие вычитания обозначается знаком — (минус).

Вычитание однозначных чисел

Чтобы обозначить, что из 9 нужно вычесть 6, пишут эти числа рядом, отделяя их знаком — (минус):

Разность между этими числами будет 3, и ход вычисления выражают словесно:

девять без шести равно трем.

Большее число 9 будет уменьшаемым, меньшее 6 вычитаемым, число 3 остатком.

Способы вычитания

Можно двумя способами вычесть одно число из другого:

или можно отнять от большего числа столько единиц, сколько их содержится в меньшем. Так, из 9 вычесть 6 значит от 9 отнять 6. Число 3 будет искомый остаток;

или можно к меньшему числу прибавлять по единице до тех пор, пока не получим большее число. Так, вычитая 6 из 9, мы к 6 прибавляем 3 единицы. Число единиц, которое нужно прибавить к меньшему числу, чтобы уравнять его с большим, определяет разность. Меньшее число с разностью должно равняться большему числу, следовательно, меньшее число и разность суть слагаемые, а большее — их сумма. На этом основано другое определение вычитания:

Вычитание есть такое действие, в котором по данной сумме и одному слагаемому отыскивается другое слагаемое.

В этом случае данная сумма есть уменьшаемое, данное слагаемое — вычитаемое, а искомая разность — другое слагаемое.

Вычитание многозначных чисел

Вычитание многозначных чисел основывается на том свойстве чисел, по которому вычесть число все-равно, что вычесть все его части. Из этого свойства видно, что вычесть какое-нибудь число все-равно, что вычесть последовательно все его единицы, десятки, сотни и т. д. Чтобы обозначить, что из числа 7228 нужно вычесть 3517, пишут:

и вычитают отдельно единицы из единиц, десятки из десятков и т. д.

Ход вычисления выражают словесно:

Начинаем вычитание с простых единиц: 8 без 7 составляют 1; подписывают под единицами 1.

Вычитаем десятки: 2 без 1 дают 1, подписываем под десятками 1.

Вычитаем сотни. Пять нельзя вычесть из 2, поэтому занимаем у следующего высшего порядка (тысяч) единицу, что и обозначаем тем, что над 7 ставим точку. Единица каждого порядка содержит 10 единиц следующего меньшего порядка. Присоединяя эти 10 единиц к 2, получим 12; 12 без 5 составляют 7, подписываем под сотнями 7. Когда занимают единицу у высшего порядка, обозначают это тем, что ставят точку над порядком, у которого занимают.

Вычитаем тысячи. Тысяч осталось вместо 7 только 6, ибо одна была взята. 6 без 3 составляют 3; подписываем под тысячами 3.

Ход вычисления выражают письменно:

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Пример. Из 17004 вычесть 6025.

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Единица четвертого имеет 10 единиц третьего порядка. Взяв из них одну для десятков, оставляем их в сотнях только 9. Присоединив 10 к 4, имеем 14.

Производя вычитание, получим:

Для десятков тысяч имеем 1, ибо эту цифру уменьшаемого переносим в разность без изменения.

Ход вычисления выразится письменно:

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Из предыдущих примеров выводим правила вычитания:

Чтобы сделать вычитание целых чисел, нужно вычитаемое подписать под уменьшаемым так, чтобы единицы одинаковых порядков стояли в одном вертикальном столбце, провести черту, под которою и подписать разность.

Вычитание нужно начинать с простых единиц, то есть с первого столбца, и затем, переходя к следующим столбцам от правой руки к левой, вычитают десятки из десятков, сотни из сотен и т. д.

Если цифра вычитаемого меньше цифры уменьшаемого, разность подписывают в том же столбце; если цифры равны, разность будет нуль. Если же цифра вычитаемого больше соответствующей цифры уменьшаемого, занимают единицу у следующего порядка уменьшаемого, отмечая это точкой, поставленной над цифрой, у которой занимают, прикладывают 10 к цифре уменьшаемого и производят вычитание. Цифру же с точкой считают на единицу меньше.

Если при вычитании цифра уменьшаемого, у которого занимают, будет 0, за которым в уменьшаемом следуют тоже нули, то занимают у первой значащей цифры, ставя над нею и всеми промежуточными нулями точки. Цифру с точкой считают на единицу меньше, а нули с точкой считают за 9.

Вычитание продолжают до тех пор, пока не получат полной разности.

Лишние цифры уменьшаемого переносят в разность.

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Зависимость между данными и искомыми вычитания

Уменьшаемое равно вычитаемому, сложенному с разностью: 9 = 6 + 3.

Арифметическое дополнение. Разность между числом и ближайшей большей единицей называется арифметическим дополнением. Так, арифметическими дополнениями чисел 7, 79, 983 будут числа:

Арифметическим дополнением иногда пользуются для облегчения арифметических вычислений.

Источник

Вычитание натуральных чисел

Понятие «вычитание»

Обозначения

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Свойства вычитания натуральных чисел

1) При вычитании натуральных чисел уменьшаемое всегда должно быть больше вычитаемого.

2) Разность показывает на сколько больше уменьшаемое больше вычитаемого.

34 больше, чем 7 на 17 единиц.

3) Если вычитаемое равно 0, разность равна уменьшаемому.

4) Если от любого числа вычесть 1, то получим число предшествующее данному.

5) Вычитание натурального числа из суммы натуральных чисел.

Чтобы вычесть натуральное число из суммы натуральных чисел, необходимо сначала сложить числа, а затем вычесть данное натуральное число, или первым действием вычесть данное натуральное число из любого слагаемого, а к разности прибавить оставшееся слагаемое.

6) Вычитание суммы чисел из натурального числа.

Чтобы вычесть сумму чисел из натурального числа, необходимо сначала сложить два числа, после этого вычесть полученную сумму из данного числа, или вычесть из данного числа любое из слагаемых, поле этого вычесть второе.

Вычитание чисел с разными разрядами

Для того чтобы вычесть числа с разным разрядом, необходимо разложить числа по разрядам.

567 = 500 + 60 + 7 = 400 + 100 + 60 + 7

Из единиц вычтем единицы, из десятков десятки, из сотен сотни и т.д.

Поскольку из 60 нельзя вычесть 70, разложим 500 на 400 и 100, прибавим 100 к 60

Полученное число: 400 + 90 + 4 = 494.

Вычитание в столбик

Многозначные числа удобнее всего вычитать в столбик. Для того чтобы вычесть число из числа в столбик, необходимо:

1. Правильно записать числа. Первым записываем уменьшаемое, под уменьшаемым пишем вычитаемое, так чтобы каждый разряд вычитаемого находился строго под соответствующим разрядом вычитаемого. Слева поставим знак «-» под столбиком, состоящим из уменьшаемого и вычитаемого проводим черту

2. Справа налево последовательно вычитаем из разряда уменьшаемого соответствующий разряд вычитаемого. Результат запишем под чертой, это будет разность.

3 Если разряд уменьшаемого окажется меньше разряда вычитаемого занимаем 10 у разряда стоящего слева (см. рисунок).

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Вычитание с помощью координатного луча

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Для вычитания с помощью координатного луча, отметим точку соответствующую уменьшаемому, в нашем примере, это число 12. Для вычитания отсчитываем влево количество единичных отрезков равных вычитаемому (8). Получившаяся точка будет являться разницей (4).

Поделись с друзьями в социальных сетях:

Источник

Что такое вычитаемое уменьшаемое и разность: правило

Существуют четыре основных арифметических действия: сложение, вычитание, умножение и деление. Они – основа математики, с их помощью производятся все остальные, более сложные вычисления. Сложение и вычитание – простейшие из них и взаимно противоположны. Но с терминами, используемыми при сложении, мы чаще сталкиваемся в жизни.

Говорим о «сложении усилий» при старании совместно получить нужный результат, о «слагаемых достигнутого успеха» и т.п. Названия же, связанные с вычитанием, остаются в пределах математики, редко появляясь в повседневной речи. Поэтому менее привычны слова вычитаемое, уменьшаемое, разность. Правило нахождения каждого из данных компонентов возможно применить лишь при понимании значения этих названий.

Значение терминов

В отличие от многих научных терминов, имеющих греческое, латинское или арабское происхождение, в данном случае используются слова с русскими корнями. Так что понять их значение несложно, а значит легко и запомнить, что каким термином обозначается.

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитанииТермины

Что такое разность чисел в математике

Если присмотреться к самому названию, становится заметно, что оно имеет отношение к словам «разный», «разница». Из этого можно заключить, что имеется в виду установленная разница между количествами.

Это интересно! Как раскрыть модуль действительного числа и что это такое

Данное понятие в математике означает:

Обратите внимание! Если количества равны друг другу, то между ними нет разницы. Значит разность их равняется нулю.

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Что такое уменьшаемое и вычитаемое

Как следует из названия, уменьшаемое – это то, что делают меньше. А сделать количество меньшим можно, отняв от него часть. Таким образом, уменьшаемым называется число, от которого отнимают часть.

Вычитаемым, соответственно, называется то число, которое от него отнимают.

УменьшаемоеВычитаемоеРазность
1811=7
145=9
2622=4

Полезное видео: уменьшаемое, вычитаемое, разность

Правила нахождения неизвестного элемента

Разобравшись в терминах, несложно установить, по какому правилу находится каждый из элементов вычитания.

Поскольку разность – результат данного арифметического действия, то ее и находят с помощью этого действия, никаких других правил тут не требуется. Но они есть на случай, если неизвестен другой член математического выражения.

Это интересно! Уроки математики: умножение на ноль главное правило

Как найти уменьшаемое

Данным термином, как было выяснено, называют количество, из которого вычли часть. Но если одну вычли, а другая осталась в итоге, следовательно, из этих двух частей число и состоит. Получается, что найти неизвестное уменьшаемое можно, сложив два известных элемента.

Итак, в данном случае, чтобы найти неизвестное, следует выполнить сложение вычитаемого и разности:

?11=7

Искомое находится путем сложения известных элементов:

7+11=18

Так же и во всех подобных случаях:

?5=9
9+5=14
?22=4
4+22=26

Что получается при вычитании. Смотреть фото Что получается при вычитании. Смотреть картинку Что получается при вычитании. Картинка про Что получается при вычитании. Фото Что получается при вычитании

Как найти вычитаемое

Если целое состоит из двух частей (в данном случае количеств), то при вычитании одной из них в результате получится вторая. Таким образом, чтобы найти неизвестное вычитаемое, достаточно вместо него вычесть из целого разность.

18?=7

Из примера видно, что от 18 отняли некоторую величину, и осталось 7. Чтобы найти эту величину, надо от 18 отнять 7.

187=11

По тому же правилу решаются и другие подобные примеры.

14?=9
149=5
26?=4
264=22

Таким образом, зная точное значение названий, можно легко догадаться, по какому правилу следует искать каждый неизвестный элемент.

Это интересно! Как разложить на множители квадратный трехчлен: формула

Полезное видео: как найти неизвестное уменьшаемое

Вывод

Четыре основных арифметических действия – та база, на которой основываются все математические вычисления, от простых до самых сложных. Конечно, в наше время, когда люди стремятся перепоручить технике все вплоть до мыслительного процесса, привычнее и быстрее производить вычисления с помощью калькулятора. Но любое умение увеличивает независимость человека – от технических средств, от окружающих. Не обязательно делать математику своей специальностью, но обладать хотя бы минимальными знаниями и умениями – значит иметь дополнительную опору для собственной уверенности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *