Что понимается под числовой апертурой микроскопа
Апертура микроскопа
Смотреть что такое «Апертура микроскопа» в других словарях:
АПЕРТУРА — (лат. apertura, от aperire открывать). 1) возвращение ленного имения владетелю. 2) отверстие, начало, ведущее в какую нибудь полость. 3) в медицине вскрытие раны. 4) в оптике плоскость для пропускания лучей света. Словарь иностранных слов,… … Словарь иностранных слов русского языка
АПЕРТУРА — (от лат. apertus открытый), величина, характеризующая оптическую систему и имеющая большое значение при оценке достоинства такой системы. А. равняется произведению показателя преломления среды, в к рой находится рассматриваемый предмет, на синус… … Большая медицинская энциклопедия
Апертура (оптика) — У этого термина существуют и другие значения, см. Апертура. Большая (1) и маленькая (2) апертура. Апертура (лат. apertura отверстие) в оптике характеристика оптического при … Википедия
выходной зрачок светового микроскопа — Изображение апертурной диафрагмы через окуляр светового микроскопа. Примечание Диаметр выходного зрачка светового микроскопа определяется по формуле где D’ диаметр выходного зрачка светового микроскопа, мм; А апертура микрообъектива; Г… … Справочник технического переводчика
Выходной зрачок светового микроскопа — 44. Выходной зрачок светового микроскопа D. Austrittspupille des Lichtmikroskops E. Exit pupil of a light microscope F. Pupille de sortie du microscope lumineux Изображение апертурной диафрагмы через окуляр светового микроскопа. Примечание.… … Словарь-справочник терминов нормативно-технической документации
ГЛУБИНА ИЗОБРАЖАЕМОГО ПРОСТРАНСТВА — (глубина резкости) расстояние в пространстве предметов (объектов) в направлении оптич. оси системы между плоскостями, ограничивающими ту область, точки к рой изображаются в плоскости фокусировки достаточно резко (кружками с диаметром, не… … Физическая энциклопедия
МИКРОСКОП — (от греч. mikros малый и skopeo смотрю), оптический инструмент для изучения малых предметов, недоступных непосредственному рассмотрению невооруженным глазом. Различают простой М., или лупу, и сложный М., или микроскоп в собственном смысле. Лупа… … Большая медицинская энциклопедия
МИКРОСКОП — (от греч. mikros малый и skopeo смотрю), оптич. прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), не видимых невооружённым глазом. Различные типы М. предназначаются для обнаружения л изучения бактерий,… … Физическая энциклопедия
МИКРОФОТОГРАФИЯ — МИКРОФОТОГРАФИЯ, получение при помощи светописи изображений микроскоп. объектов, обыкновенно наблюдаемых субъективно через окуляр микроскопа. Основные достоинствам., это точность и объективность даваемых ею изображений, сравнительная быстрота и… … Большая медицинская энциклопедия
Микроскоп — I Микроскоп (от Микро. и греч. skopéo смотрю) оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз представляет собой естественную… … Большая советская энциклопедия
Апертура (оптика)
Входная апертура — характеристика способности оптической системы собирать свет от объекта наблюдения. Если объект удалённый (как у телескопа или обычного фотообъектива) то апертуру измеряют в линейном виде — это просто диаметр светового пучка на входе в оптическую систему, который ограничивается апертурной диафрагмой и достигает изображения. В телескопах этот диаметр обычно равен диаметру первого по ходу света оптического элемента (линзы или зеркала). В фотообъективах (особенно широкоугольных) размер первой линзы, как правило, много больше входной апертуры и её размер уже следует рассчитывать. Входная апертура объектива равна произведению его фокусного расстояния f’ на относительное отверстие или частному от фокусного расстояния на диафрагменное число. Если объект наблюдения близкий (как у лупы, объектива микроскопа или проектора), то апертуру измеряют в угловом виде — это угол светового пучка, исходящего из точек предмета наблюдения и попадающего в оптическую систему.
Апертурный угол — угол между крайним лучом конического светового пучка на входе (выходе из) оптической системы и её оптической осью.
Угловая апертура — угол между крайними лучами конического светового пучка на входе (выходе из) оптической системы.
* в волоконных оптических системах — синус максимального угла между осью и лучом, для которого выполняются условия полного внутреннего отражения при распространении оптического излучения по волокну. Она характеризует эффективность ввода световых лучей в оптическое волокно и зависит от конструкции волокна.
в световой микроскопии равна произведению показателя преломления среды между предметом и объективом на синус апертурного угла. Именно эта величина наиболее полно определяет одновременно светосилу, разрешающую способность объектива микроскопа. Для увеличения числовой апертуры объективов в микроскопии пространство между объективом и покровным стеклом заполняют иммерсионной жидкостью.Апертура объектива — диаметр D светового пучка на входе в объектив и целиком проходящего через его апертурную диафрагму. Эта величина также определяет дифракционный предел разрешения объектива. Для оценки разрешающей способности в угловых секундах используется формула 140/D, где D — апертура объектива в миллиметрах.
На что влияет апертура объектива микроскопа?
Объектив – это часть оптической системы микроскопа, которая отвечает за формирование увеличенного изображения. При покупке дополнительного объектива чаще всего обращают внимание на его кратность, ведь это напрямую влияет на увеличение самого оптического прибора. Но есть еще одна характеристика, которую не стоит игнорировать при выборе этого аксессуара, – числовая апертура объектива микроскопа.
Чтобы узнать значение этого параметра, достаточно взглянуть на корпус объектива. На нем должна быть надпись примерно такого плана: «100/1,25 oil 160/0,17». Это расшифровывается следующим образом:
В зависимости от модели объектива все эти цифры могут варьироваться, но порядок их остается неизменным. Вначале указывается кратность объектива, а после нее через косую черту – апертура. Причем нужно подчеркнуть, что именно «числовая». Существует еще и «угловая», но в явном виде ее нигде не пишут. Числовая и угловая апертуры связаны друг с другом сложной математической формулой.
Что такое числовая апертура микроскопа (объектива)? Это величина, которая говорит нам о том, какой разрешающей способностью будет обладать микроскоп при использовании выбранного объектива. Чем больше числовая апертура, тем более мелкие детали микроскоп сможет четко отобразить. Например, у нас есть два объектива – 40/0,65 и 40/1,3. Оба аксессуара дают одинаковое увеличение в 40 крат, но более четкую картинку мы сможем наблюдать при использовании объектива с апертурой 1,3. Мы сможем видеть более тонкие нюансы микроструктур и больше различий между близко расположенными элементами образцов. Грубо говоря, объектив 40/0,65 передаст более мутное изображение, чем объектив 40/1,3. Стоит отметить, что на малых увеличениях важность числовой апертуры не столь велика. На нее стоит обращать внимание только при выборе объективов свыше 40 крат.
В нашем интернет-магазине есть раздел, полностью посвященный объективам микроскопов. В нем вы найдете аксессуары для любительских и профессиональных моделей, отличающиеся друг друга увеличением, апертурой и посадочным диаметром. Наши консультанты всегда готовы помочь с выбором любых аксессуаров для ваших оптических приборов. Звоните или пишите!
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Числовая апертура и разрешающая способность
В этом руководстве исследуется влияние числовой апертуры объектива на разрешение концентрических ярких колец.
ЧИСЛОВАЯ АПЕРТУРА И РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ
Изображение, сформированное идеальной линзой объектива без аберраций в промежуточной плоскости изображения микроскопа, представляет собой дифракционную картину, создаваемую сферическими волнами, выходящими из задней апертуры и сходящимися в точке фокусировки. В этом руководстве исследуется влияние числовой апертуры объектива на разрешение концентрических ярких колец, присутствующих в дифракционной картине, обычно известных как диски Эйри.
Узор Эйри, сформированный в промежуточной плоскости изображения микроскопа, представляет собой трехмерное дифракционное изображение, которое является симметрично периодическим как вдоль оптической оси микроскопа, так и радиально по плоскости изображения. Эта дифракционная картина может быть разрезана в фокальной плоскости для получения двумерной дифракционной картины, имеющей яркое круглое пятно, окруженное чередующейся серией ярких и темных дифракционных колец высшего порядка, интенсивность которых уменьшается по мере того, как они удаляются от центрального пятна. Обычно в микроскоп видны только два или три круглых светящихся кольца (это число зависит от числовой апертуры объектива), потому что высшие порядки поглощаются рассеянным светом и не видны.
Справа на рисунках находится трехмерное изображение рисунка Эйри и промежуточная плоскость изображения (обычно называемой вычисленной функцией рассеяния точки). Видно, что при увеличении числовой апертуры объектива сложный узор Эйри в окне обзора сжимается, демонстрируя постепенно увеличивающееся разрешение деталей изображения. Одновременно центральный пик и дифракционные кольца более высокого порядка на трехмерном рисунке Эйри становятся меньше в диаметре.
Разрешающая способность объектива определяет размер образующейся дифракционной картины Эйри, а радиус центрального диска определяется совокупными числовыми апертурами объектива и конденсора. Когда конденсатор и объектив имеют эквивалентные числовые апертуры, радиус диаграммы Эйри от центрального пика до первого минимума определяется уравнением
на которое явно влияет числовая апертура объектива. Обратите внимание, что более низкие значения D указывают на более высокое разрешение.
При самом низком значении числовой апертуры (0,20) детали изображения, видимые в окне обзора микроскопа, плохо определены и окружены дифракционными полосами, которые являются диффузными, но не разрешенными.
По мере того, как мы перемещается к более высоким значениям числовой апертуры (0,50–0,80), структурный контур изображения становится более резким и начинают появляться дифракционные кольца более высокого порядка. Например, в промышленных микроскопах Nikon (прямом LV150N, инвертированном MA200 и т.д) с новой уникальной оптический системой CFI-2, в которой сочетаются высокие числовые апертуры и большие рабочие расстояния.
При самых высоких числовых апертурах (1,04–1,30) дифракционные диски становятся индивидуально различимыми как дискретные светящиеся точки, окруженные чередующимися сериями ярких и темных дифракционных колец более высокого порядка с уменьшающейся интенсивностью. Таких значений числовых апертур можно добиться, используя иммерсионные объективы Nikon на прямых микроскопах.
Оптика микроскопа (оптическая часть)
Оптические узлы и принадлежности обеспечивают основную функцию микроскопа — создание увеличенного изображения объекта с достаточной степенью достоверности по форме, соотношению размеров составляющих элементов и цвету. Кроме этого, оптика должна обеспечивать такое качество изображения, которое отвечает целям исследования и требованиям методик проводимого анализа.
Основными оптическими элементами микроскопа являются оптические элементы, образующие осветительную (в том числе, конденсор), наблюдательную (окуляры) и воспроизводящую (в том числе объективы) системы микроскопа.
Объективы микроскопа
Объективы микроскопа представляют собой оптические системы, предназначенные для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, разрешением элементов, точностью воспроизведения по форме и цвету объекта исследования.
Они имеют сложную оптико-механическую конструкцию, которая включает несколько одиночных линз и компонентов, склеенных из 2-х или 3-х линз.
Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, даваемое объективом, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14 (например, это может относиться к планапохроматическому объективу с увеличением 100х и числовой апертурой 1,40).
Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.
Числовая апертура и увеличение объективов
Чем больше NA (апертура) объектива, тем более мелкие детали он может разрешать. Если посмотреть на паспортные данные объективов, то можно видеть, что увеличение и апертура не связаны строго между собой. Так, например, существуют объективы 40/0,65; 40/1,3 и 100/1,3. Первые два дают изображения, сходные по размерам, однако второй позволяет различить более мелкие детали. Два последних объектива, масляно-иммерсионные, имеют одинаковое разрешение, но объектив 40 позволяет наблюдать большую площадь препарата (при меньшем увеличении) по сравнению с объективом 100.
Объективы следует выбирать, исходя, главным образом, из их апертуры, а следовательно, из разрешающей способности, а не из увеличения. В настоящее время многие микроскопы снабжены системами переменного увеличения, которые позволяют изменять конечное увеличение приблизительно вдвое. Кроме того, при печати можно давать дополнительное фотоувеличение. Из трех упомянутых выше объективов при прочих равных характеристиках рекомендуется для получения качественных фотомикрографий объектив 40/1,3.
Исправление аберраций
Объективы для микроскопов подразделяются на несколько типов в зависимости от степени исправления хроматической и сферической аберраций. Эти типы можно в свою очередь подразделить в соответствии с тем, насколько объективы свободны от кривизны поля зрения, каковы их увеличение и числовая апертура, являются ли они сухими или иммерсионными.
Простейшие объективы — это ахроматы, которые сводят синие и красные лучи в один фокус, несколько отличающийся от фокуса для зеленого света. Даваемое ими изображение может иметь слабо заметные цветные кольца, окрашенные в зависимости от фокусировки в зеленый или пурпурный цвет. Ахроматы исправлены в отношении сферической аберрации только для зеленых лучей. Они сравнительно дешевы и пригодны для визуальных наблюдений. Для фотомикрографии их следует использовать по возможности вместе с
монохроматическим зеленым светофильтром или интерференционным
зеленым фильтром. Тогда они дают сравнительно хорошие результаты.
Флюоритовые объективы (названные так потому, что в них стоят линзы из минерала флюорита), или полуапохроматы, лучше исправлены в отношении хроматической аберрации, чем ахроматы. Благодаря этому они выпускаются с относительно большей (при данном увеличении) апертурой и дают более качественное и контрастное изображение. Простота конструкции и большая светосила делают флюоритовые объективы удобными для флуоресцентной микроскопии. Они также могут быть с успехом использованы для фотомикрографии.
Апохроматы представляют собой наиболее скорректированные объективы, у которых практически
полностью исправлена хроматическая аберрация, а сферическая аберрация исправлена не для одного, а для двух цветов. Эти объективы дают высококачественное изображение и более всего подходят для качественной фотомикрографии, особенно в цвете. Такие объективы сложны в изготовлении, поэтому в микроскопах многих фирм добиваются коррекции вторичной хроматической аберрации с помощью специальных «компенсационных» окуляров. По этой причине полностью исправленная система состоит из объектива и соответствующего окуляра. Для объективов, изготовленных различными фирмами, а иногда и для разных объективов, выпускаемых одной фирмой, нужны различные окуляры. В некоторых случаях полная коррекция аберраций проведена в самом объективе. Обычно практикуемая в лабораториях беспорядочная замена оптических элементов, очевидно, не может дать хороших результатов. Если нет уверенности в целесообразности той или иной замены, то следует обратиться к инструкциям изготовителя.
Сухие объективы и толщина покровного стекла
Если использовать объектив не так, как рекомендуется, то качество изображения ухудшится из-за неполной коррекции сферической аберрации. Для большинства сухих объективов (то есть рассчитанных на воздушную прослойку между препаратом и фронтальной линзой) требуется покровное стекло толщиной 0,17 мм, и последнее число выгравировано на их оправе. Некоторые объективы, маркированные Эпи (Epi), 0, или просто «—», рассчитаны на работу с непокрытым препаратом, другие, наоборот, могут быть использованы при работе с культуральными флаконами и рассчитаны на толщину их стенок до 2 мм.
Небольшие отклонения в толщине покровного стекла, как правило, несущественны для объективов с апертурой менее 0,65, но имеют значение для сухих объективов с большой апертурой (0,75—0,95). Эти объективы часто имеют коррекционную оправу, которая позволяет добиваться максимальной коррекции сферической аберрации за счет изменения расстояния между линзами объектива. Даже при использовании покровного стекла нужной толщины может потребоваться коррекция на дополнительную толщину, создаваемую заливочной средой.
Иммерсионные объективы
Иммерсия (от лат. immersio — погружение) — жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом).
Иммерсионные объективы необходимо использовать в тех случаях, когда нужна апертура 1,0 и более. Иммерсионная жидкость, расположенная между объектом и фронтальным компонентом объектива, увеличивает угол, под которым рассматривается объект (апертурный угол).
Большинство иммерсионных объективов рассчитаны на работу со специально изготовленным маслом. Кроме того, имеются объективы для работы с водной и с глицериновой иммерсией, а также объективы, настраиваемые для работы с любой иммерсионной средой. Поскольку оптические свойства заливочной среды, покровного стекла и иммерсионного масла близки, то большая или меньшая толщина одного слоя по сравнению с другим не приводит к искажениям. Поэтому при фотомикрографии значительно лучше использовать иммерсионный объектив 40/1,0. а не сухой 40/0,95.
Другими словами, особенности использования иммерсионных объективов таковы:
1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;
2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.
Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.
Поскольку иммерсионные масла несколько различаются, то при их применении следует руководствоваться рекомендациями фирмы-изготовителя оптики. Особенно важно избегать смешения различных масел. Если на объективе остались следы масла, то при использовании другого масла качество изображения может ухудшиться, поэтому объективы необходимо чистить.
Глубина резкости
Многие объективы дают изображение, в котором центральная часть и периферия не могут быть сфокусированы одновременно. Чтобы решить данную проблему, фирмы-изготовители выпускают специальные объективы с минимальной
кривизной поля зрения, которые отмечены приставкой «План» (Plan), например Планахромат и Планапохромат, где исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения.
По параметрическим признакам объективы делятся следующим образом:
• объективы с конечной длиной тубуса (например, 160 мм) и объективы, скорректированные на длину тубуса «бесконечность» (например, с дополнительной тубусной системой, имеющей фокусное расстояние 160 мм);
• объективы малых (до 10х); средних (до 50х) и больших (более 50х) увеличений, а также объективы со сверхбольшим увеличением (свыше 100 х);
• объективы малых (до 0,25), средних (до 0,65) и больших (более 0,65) числовых апертур, а также объективы с увеличенными (по сравнению с обычными) числовыми апертурами (например, объективы апохроматической коррекции, а также специальные объективы для люминесцентных микроскопов);
• объективы с увеличенными (по сравнению с обычными) рабочими расстояниями, а также с большими и сверхбольшими рабочими расстояниями (объективы для работы в инвертированных микроскопах). Рабочее расстояние — это свободное расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы (линзы, если она выступает) фронтального компонента объектива;
• объективы, обеспечивающие наблюдение в пределах нормального линейного поля (до 18 мм); широкопольные объективы (до 22,5 мм); сверхширокопольные объективы (более 22,5 мм);
• объективы стандартные (45 мм, 33 мм) и нестандартные по высоте. Высота — расстояние от опорной плоскости объектива (плоскости соприкосновения ввинченного объектива с револьверным устройством) до плоскости предмета при сфокусированном микроскопе, является постоянной величиной и обеспечивает парфокальность комплекта аналогичных по высоте объективов разного увеличения, установленных в револьверном устройстве. Иными словами, если с помощью объектива одного увеличения получить резкое изображение объекта, то при переходе к последующим увеличениям изображение объекта остается резким в пределах глубины резкости объектива.
По конструктивно-технологическим признакам существует следующее разделение:
• объективы, имеющие пружинящую оправу (начиная с числовой апертуры 0,50), и без нее;
• объективы, имеющие ирисовую диафрагму внутри для изменения числовой апертуры (например, в объективах с увеличенной числовой апертурой, в объективах проходящего света для реализации метода темного поля, в поляризационных объективах отраженного света);
• объективы с корректирующей (управляющей) оправой, которая обеспечивает движение оптических элементов внутри объектива (например, для корректировки качества изображения объектива при работе с различной толщиной покровного стекла или с различными иммерсионными жидкостями; а также для изменения увеличения при плавной — панкратической — смене увеличения) и без нее.
По обеспечению методов исследования и контрастирования объективы можно разделить следующим образом:
• объективы, работающие с покровным и без покровного стекла;
• объективы проходящего и отраженного света (безрефлексные); люминесцентные объективы (с минимумом собственной люминесценции); поляризационные объективы (без натяжения стекла в оптических элементах, т. е. не вносящие собственную деполяризацию); фазовые объективы (имеющие фазовый элемент — полупрозрачное кольцо внутри объектива); объективы ДИК (DIC), работающие по методу дифференциально-интерференционного контраста (поляризационные с призменным элементом); эпиобъективы (объективы отраженного света, предназначенные для обеспечения методов светлого и темного поля, имеют в конструкции специально рассчитанные осветительные эпи-зеркала);
• иммерсионные и безыммерсионные объективы.
Маркировка объективов.
Данные о каждом объективе маркируются на его корпусе с указанием следующих параметров:
• увеличение («х»-крат, раз): 8х, 40х, 90х;
• числовая апертура: 0,20; 0,65,
• пример: 40/0,65 или 40х/0,65;
• дополнительная буквенная маркировка, если объектив используется при различных методах исследования и контрастирования: фазовый — Ф (Рп2 — цифра соответствует маркировке на специальном конденсоре или вкладыше), поляризационный — П (Pol), люминесцентный — Л (L), фазово-люминесцентный — ФЛ (PhL), ЭПИ (Epi, HD) — эпиобъектив для работы в отраженном свете по методу темного поля, дифференциально-интерференционный контраст — ДИК (DIC), пример: 40х/0,65 Ф или Ph2 40x/0,65;
• маркировка типа оптической коррекции: апохромат — АПО (АРО), планахромат — ПЛАН (PL, Plan), планапохромат — ПЛАН-АПО (Plan-Аро), улучшенный ахромат, полуплан — СХ — стигмахромат (Achrostigmat, CP-achromat, Achroplan), микрофлюар (полуплан-полуапохромат) — СФ или М-ФЛЮАР (MICROFLUAR, NEOFLUAR, NPL, FLUOTAR).
Окуляры микроскопа
Оптические системы, предназначенные для построения микроскопического изображения на сетчатке глаза наблюдателя. В общем виде окуляры состоят из двух групп линз: глазной — ближайшей к глазу наблюдателя — и полевой — ближайшей к плоскости, в которой объектив строит изображение рассматриваемого объекта.
Окуляры классифицируются по тем же группам признаков, что и объективы:
1. окуляры компенсационного (К — компенсируют хроматическую разность увеличения объективов свыше 0,8%) и безкомпенсационного действия;
2. окуляры обычные и плоского поля;
3. окуляры широкоугольные (с окулярным числом — произведение увеличения окуляра на его линейное поле — более 180); сверхширокоугольные (с окулярным числом более 225);
4. окуляры с вынесенным зрачком для работы в очках и без;
5. окуляры для наблюдения, проекционные, фотоокуляры, гамалы;
6. окуляры с внутренней наводкой (с помощью подвижного элемента внутри окуляра происходит настройка на резкое изображение сетки или плоскость изображения микроскопа; а также плавное, панкратическое изменение увеличения окуляра) и без нее.
Маркировка окуляров.
На окулярах маркируют следующие характеристики:
• линейное увеличение окуляра: 10х, 15х
• линейное поле зрения (в мм): 18, 20, 22
• пример: 10х/18
• работа в очках (дополнительный символ в виде очков);
• фокусировочный (передвижной) элемент внутри окуляра для наводки на резкость изображения сетки окуляра (foc.)
• тип коррекции (Pl) или компенсация хроматической разности увеличения (К)