Что понимают под измерениями
Понятия об измерениях
Измерение— совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или не явном виде) измеряемой величины с её единицей и получение значения этой величины.
Например, прикладывая линейку с делениями к какой-либо детали, по сути, сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значения величины (длины, высоты, толщины и других параметров детали); с помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.
Метод измерения – приём или совокупность приёмов сравнения измеряемой величины с её единицей в соответствии с реализованным принципом измерений. Пример: измерение массы на рычажных весах с уравновешиванием гирями (мерами массы с известным значением).
Результат измерения – значение величины, полученное путём её измерения.
Погрешность результата измерений – отклонение результата измерений от истинного (действительного) значения измеряемой величины.
Точность результата измерений – одна из характеристик качества измерений, отражающая близость к нулю погрешности результата измерения. Высокая точность измерения соответствует малым погрешностям. Количественно точность оценивают обратной величиной модуля относительной погрешности, например, если относительная погрешность составляет 0,01, то точность равна 100.
Прямые измерения – измерения, при которых искомое значение физической величины получают непосредственно из опытных данных. К прямым измерениям относится нахождение значения напряжения, тока, мощности по шкале прибора и т.д.
Косвенные измерения – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. При этом числовое значение искомой величины находится расчётным путём, например значение мощности в нагрузке определяется по показаниям амперметра и вольтметра (P=UI). Хотя косвенные измерения сложнее прямых, они широко применяются в практике измерений, особенно там, где прямые измерения практически невыполнимы, либо тогда, когда косвенное измерение позволяет получить более точный результат по сравнению с прямым измерением.
1.4.ВОПРОСЫ К ЭКЗАМЕНУ
1. Что такое прямые измерения?
2. Что такое косвенное измерение?
3. В чем заключается основная задача измерений?
4. Что такое истинное значение измеряемой величины?
5. Физический смысл записи конечного результата.
6. Методы теории подобия и размерностей.
7. Адиабатические инварианты.
8. Современная физическая картина мира.
9. Ретроспективный взгляд на формирование естественнонаучных представлений.
10. Особенности описания природы в классической версии естественнонаучной картины мира.
11. Особенности описания природы в неклассической версии естественнонаучной картины мира.
12. Концепция измерения в классическом естествознании.
13. Классические измерительные системы.
14. Единицы измерения и системы единиц.
15. В чем состоит смысл понятия однородность применительно к времени, к пространству?
16. Как понимать термин «изотропность пространства»?
17. Почему пространство и время относительны?
18. Почему движение объекта отражает взаимосвязь пространства и времени?
19. Масса как фундаментальная характеристика инертности и гравитации.
21. Полная энергия и полный момент как фундаментальные характеристики объекта.
22 Концепция контролируемого воздействия.
23. Характеристики контролируемого воздействия на частицу.
24. Механическая энергия и динамика частицы.
25. Концепция измерения в неклассическом естествознании.
26. Концепция моделирования состояний.
27. Неклассические представления о характеристиках объектов и состояний.
28. Фундаментальные модели неклассической физики.
29. Ограничение воздействия на микроуровне как фундаментальный закон природы.
30. Микросостояние одной микрочастицы.
31. Целостность микросостояний.
32. Особенность микросостояний системы тождественных частиц.
33. Тепловое равновесие как макросостояние.
34. Детерминированное и стохастическое движения.
35. Ограничение воздействия на макроуровне как фундаментальный закон природы.
36. Макропараметры как характеристики объектов и их макросостояний в тепловом равновесии.
37. Два способа описания природы на макроуровне.
38. Концепция флуктуаций и их корреляций.
39. Флуктуации и альтернативная корреляция между ними в микромире.
40. Флуктуации и неальтернативная корреляция между ними в макромире.
41. Универсальные корреляции между флуктуациями в неклассической физике.
42. Физические принципы создания современной эталонной базы.
43. Явления сверхпроводимости.
44. Эффект Ааронова-Бома.
46. Эффект Джозевсона.
47. Эффект Мессбауэра.
49. Естественные пределы точности измерений. Броуновское движение. Шумы сопротивления.
50. Естественные пределы точности измерений. Шумы, обусловленные дискретностью вещества. Шумы и помехи окружающей среды.
Измерение
Измерение — совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений — мер, измерительных приборов, измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).
Характеристикой точности измерения является его погрешность или неопределённость. Примеры измерений:
В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов.
Наука, предметом изучения которой являются все аспекты измерений, называется метрологией.
Содержание
Классификация измерений
По видам измерений
Согласно РМГ 29-99 «Метрология. Основыне термины и определения» выделяют следующие виды измерений:
Также стоит отметить, что в различных источниках дополнительно выделяют таки виды измерений: метрологически и технические, необходимые и избыточные и др.
По методам измерений
По условиям, определяющим точность результата
По отношению к изменению измеряемой величины
Статические и динамические.
По результатам измерений
Классификация рядов измерений
По точности
По числу измерений
Классификация измеряемых величин
По точности
По результатам измерений
История
Единицы и системы измерения
См. также
Примечания
Литература и документация
Литература
Нормативно-техническая документация
Ссылки
Полезное
Смотреть что такое «Измерение» в других словарях:
ИЗМЕРЕНИЕ — представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или… … Философская энциклопедия
Измерение X — Измерение Икс … Википедия
измерение — замер, обмер; вымеривание, установление, фиксирование, замеривание, распознавание, промер, диагностирование, смеривание, нахождение, обмеривание, определение Словарь русских синонимов. измерение см. установление 2 Словарь синонимов … Словарь синонимов
измерение — (в психологии) научный метод представления числами интересующего психического свойства или параметров психического процесса на основе нек рых процедурных правил. Совокупность теоретико математических представлений и процедурных правил,… … Большая психологическая энциклопедия
ИЗМЕРЕНИЕ — ИЗМЕРЕНИЕ, измерения, ср. 1. Действие по гл. измерить измерять. Измерение роста. 2. Измеряемая величина, протяжение (мат.). Куб имеет три измерения: длину, высоту и ширину. ❖ Четвертое измерение (ирон.) перен. сверхъестественная и бесплодно… … Толковый словарь Ушакова
ИЗМЕРЕНИЕ — последовательность эксперим. и вычислит. операций, осуществляемая с целью нахождения значения физ. величины, характеризующей нек рый объект или явление. И. завершается определением степени приближения найденного значения к истинному значению… … Физическая энциклопедия
ИЗМЕРЕНИЕ — ИЗМЕРЕНИЕ, действия, производимые с целью нахождения числовых значений какой либо величины в принятых единицах измерения. Измерение выполняют с помощью соответствующих средств измерения (линейка, часы, весы и т.д.). Различают прямые… … Современная энциклопедия
ИЗМЕРЕНИЕ — совокупность действий, выполняемых при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах измерения. Различают прямые измерения (напр., измерение длины проградуированной линейкой) и косвенные… … Большой Энциклопедический словарь
измерение — Сравнение конкретного проявления измеряемого свойства (измеряемой величины) со шкалой (частью шкалы) измерений этого свойства (величины) с целью получения результата измерения (значения величины или оценки свойства). [МИ 2365 96] измерение… … Справочник технического переводчика
Измерение — ИЗМЕРЕНИЕ, действия, производимые с целью нахождения числовых значений какой либо величины в принятых единицах измерения. Измерение выполняют с помощью соответствующих средств измерения (линейка, часы, весы и т.д.). Различают прямые… … Иллюстрированный энциклопедический словарь
Лекция 2. Виды и методы измерений
Описание
1. Основные понятия и определения. Виды измерений.
2. Методы измерений.
3. Понятие о точности измерений.
4. Основы обеспечения единства измерений
Оглавление
1. Основные понятия и определения. Виды измерений
Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.
Измерения могут быть классифицированы по метрологическому назначению на три категории:
Ненормированные – измерения при ненормированных метрологических характеристиках.
Технические – измерения при помощи рабочих средств измерений.
Метрологические – измерения при помощи эталонов и образцовых средств измерений.
Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.
Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.
Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.
В дисциплине «Метрология, стандартизация и сертификация» рассматриваются технические измерения.
Можно выделить следующие виды измерений.
1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:
2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.
При прямом измерении искомое значение величины находят непосредственно из опытных данных (например, измерение диаметра штангенциркулем).
При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.
Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).
Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.
3) По условиям, определяющим точность результата измерения, методы делятся на три класса.
Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.
Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.
Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.
4) По способу выражения результатов измерений различают абсолютные и относительные измерения.
Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.
При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).
5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.
Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).
Комплексный метод характеризуется измерением суммарного показателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).
2. Методы измерений
Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Можно выделить следующие методы измерений.
По способу получения значения измеряемых величин различают два основных метода измерений.
Метод непосредственной оценки – метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия.
Метод сравнения с мерой – метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
Разновидности метода сравнения:
При измерении линейных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений.
В зависимости от измерительных средств, используемых в процессе измерения, различают:
3. Понятие о точности измерений
Точность результата измерения – характеристика качества измерения, отражающая близость к нулю погрешности его результата.
Эти погрешности являются следствием многих причин: несовершенства средств измерений, метода измерений, опыта оператора; недостаточной тщательности проведения измерения; воздействия внешних условий и т.д. Для оценки степени приближения результатов измерения к истинному значению измеряемой величины используются методы теории вероятности и математической статистики, что позволяет с определенной достоверностью оценить границы погрешностей, за пределы которых они не выходят. Это дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие измерение результата, погрешности которого не превышают заданных границ с требуемой степенью доверия к результатам измерений (достоверностью).
Класс точности – обобщённая метрологическая характеристика средства измерения.
Класс точности определяется и обозначается по-разному. Наибольшее распространение получили три варианта, каждый представляет собой выраженное в процентах значение относительной погрешности:
– относительно измеренного значения (относительная погрешность),
– относительно максимального значения шкалы (приведённая погрешность),
– относительно участка шкалы (приведённая к участку шкалы погрешность).
Рассмотрим эти три варианта.
Вариант 1. Относительная погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, результат измерения умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В.
Абсолютная погрешность составит: (10,000 В ∙ 0,1 %) / 100 % = 0,010 В. Запись результата: (10,000 ± 0,010) В, с вероятностью 95 % (эта вероятность по умолчанию назначается для технических измерений, исходя из этой вероятности определяется и класс точности). При нормировании по относительной погрешности, значение класса точности заключают в кружок. Как правило, обозначение класса точности размещают в правом нижнем углу на шкале средства измерений.
Вариант 2. Приведённая погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, максимальное значение шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В. Максимальное значение шкалы составляет 20,000 В.
Абсолютная погрешность составит: (20,000 В ∙ 0,1 %) / 100 % = 0,020 В. Запись результата: (10,000 ± 0,020) В, с вероятностью 95 %. При нормировании по приведённой погрешности, значение класса точности не сопровождают никакими знаками.
Вариант 3. Приведённая к участку шкалы погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, размер участка шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Рассмотрим два примера, для случая, когда вся шкала поделена на два участка.
Пример 1. Участок шкалы от 0,000 В до 12,000 В, отмечен галочкой. Вольтметром класса точности 0,1 получено значение 10,000 В.
Абсолютная погрешность составит: (12,000 В ∙ 0,1 %) / 100 % = 0,012 В. Запись результата: (10,000 ± 0,012) В, с вероятностью 95 %.
Пример 2. Участок шкалы от 12,000 В до 20,000 В, также отмечен галочкой. Вольтметром класса точности 0,1 получено значение 15,000 В.
Абсолютная погрешность составит: (8,000 В ∙ 0,1 %) / 100 % = 0,008 В. Запись результата: (15,000 ± 0,008) В, с вероятностью 95 %. При нормировании по приведённой к участку шкалы погрешности, значение класса точности помещают над галочкой. Участки шкалы, относительно которых нормируется погрешность, обозначают галочками.
Варианты классов точности обусловлены отличием конструктивных, системных и схемотехнических решений средств измерений.
Корректная запись результатов
Запись результатов измерений производится по следующим правилам.
1) Погрешность указывается двумя значащими цифрами, если первая равна 1 или 2. Погрешность указывается одной значащей цифрой, если первая равна 3 или более. Все остальные цифры должны быть не значащими.
Значащей цифрой называется любая цифра числа, записанного в виде десятичной дроби, начиная слева с первой отличной от нуля цифры, независимо от того, где она находится – до запятой или после запятой.
2) Результат измерения округляется в соответствии с его погрешностью, т.е. записывается с той же точностью, что и погрешность.
Рассмотрим пример. Результат измерения: 10,645701, погрешность 0,012908.
1) Рассматриваем погрешность. Первая значащая цифра 1, поэтому оставляем две значащие цифры, округляя, записываем: 0,013.
2) Рассматриваем результат измерения. Погрешность записана с точностью до третьего знака после запятой, поэтому в результате также оставим три знака. Округляя, записываем: 10,646.
Корректная запись: 10,646 ± 0,013.
Корректная запись обеспечивает адекватность и сопоставимость результатов различных измерений и является одним из элементов единства измерений. Как правило, отбрасывание избыточных цифр не приводит к дополнительной погрешности, поскольку избыточные цифры обусловлены точностью вычислений, а не точностью измерений.
4. Основы обеспечения единства измерений
Специализация и кооперирование производства в масштабах страны, основанные на принципах взаимозаменяемости, требуют обеспечения и сохранения единства измерений.
Обеспечение единства измерений – деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с правилами, требованиями и нормами, установленными государственными стандартами и другими нормативно-техническими документами в области метрологии.
В 1993 г. был принят Закон Российской Федерации «Об обеспечении единства измерений», который устанавливает правовые основы обеспечения единства измерений в нашей стране. Он состоит из семи разделов: общие положения; единицы величин, средства и методики выполнения измерений; метрологические службы; государственный метрологический контроль и надзор; калибровка и сертификация средств измерений; ответственность за нарушение закона и финансирование работ по обеспечению единства измерений. В Законе дано следующее определение понятия «единство измерения»:
«Единство измерения – состояние измерений, при котором их результаты выражены в узаконенных единицах величин и погрешности измерений не выходят за установленные границы с заданной вероятностью».
Обеспечение единства измерений является задачей метрологических служб.
Метрологическая служба – совокупность субъектов, деятельности и видов работ, направленных на обеспечение единства измерений.
Закон определяет, что Государственная метрологическая служба находится в ведении Госстандарта России и включает: государственные научные метрологические центры; органы Государственной метрологической службы регионов страны, а также городов Москва и Санкт-Петербург.
Измерение
Измерение — это познавательная операция, в которой производится процедура сравнения какой-либо величины с другой величиной, принятой за эталон. В широком смысле измерение понимается как метод познавательной деятельности (см. Методы научного познания), в результате которого определённые объекты получают количественные характеристики по тем или иным свойствам. В математике понятие измерения трактуется как протяжённость: линия имеет одно измерение (длину), поверхность — два (длину и ширину), тело — три (длину, ширину и высоту); наряду с этим в современных (неевклидовых) геометриях вводится понятие многомерности пространства (пространства n-измерений).
В практической деятельности и в научном исследовании имеют место различные типы измерительных процедур. Особенности этих процедур определяются природой измеряемых объектов, состоянием покоя или движения, приёмами обработки полученных результатов, интерпретацией результатов измерения, определёнными законами, которым подчиняются измеряемые объекты. В науке (см. Наука) измерение дополняет качественные методы познания действительности точными количественными методами. В основе операции измерения лежит сравнение объектов по каким-либо сходным свойствам, характеристикам, признакам. Через измерение осуществляется переход от наблюдаемого в опыте к математическим абстракциям и обратно. С помощью эталонов (единиц измерения) становится возможным точно соизмерить рассматриваемые величины, выражая их отношение через отношение чисел. Учитывая, что многие величины функционально связаны между собой, удаётся на основе знания одних величин косвенным путём устанавливать другие.
В научной практике количественное знание изучаемых величин может быть получено как непосредственно в виде прямого измерения, так и косвенного, то есть выполненного путём расчёта. На этой основе складывается представление о прямом и косвенном измерении.
Прямое измерение представляет собой непосредственно эмпирическую процедуру. Оно выступает как сравнение некоторого измеряемого свойства с эталоном. Эталон — это особая вещь, которая обеспечивает сохранение и воспроизведение некоторого выделенного свойства, по которому измеряют определённый класс величин. Появление эталонов измерения является результатом длительного исторического развития общественной практики и совершенствования методики самого научного исследования. Оно связано с переходом от случайной к развёрнутой и затем ко всеобщей форме прямого измерения. На ранних этапах измерение выступает в случайной форме, когда ещё нет эталонов, а измерение величины, характеризующей вещь, производится посредством любой другой вещи, характеризуемой этой же величиной. Затем по мере развития практики измерение начинает охватывать всё более широкие классы объектов и из случайной переходит в развёрнутую форму. На этом этапе вещь становится эталоном. Эталон служит первой основой для введения единиц измерения (например, эталон длины в Парижской палате мер и весов одновременно служит мерой и масштабом длины и даёт её единицу 1 м). Постоянство эталона является наиболее важным условием процедуры измерения, так как если эталон оказывается подвержен изменению, это неизбежно приводит к ошибкам.
В процессе проведения прямых измерений применяются специальные измерительные инструменты, или приборы, которые позволяют через ряд шагов сравнивать измеряемую величину с эталоном. Качество измерения определяется точностью, чувствительностью и надёжностью применяемого инструмента. Точностью инструмента называется его соответствие существующему в данной области стандарту или эталону. В сложных случаях эмпирического исследования прямое измерение может осуществляться в процессе эксперимента, выступать как его элемент. Но, тем не менее, измерение не отождествляется с экспериментальной процедурой. Оно может осуществляться и вне эксперимента. С другой стороны, эксперимент не всегда бывает связан с измерением и может носить качественный характер. Таким образом, измерение и эксперимент выступают как специфические методы эмпирического исследования, которые могут выступать как отделённые друг от друга, так и синтезированные в рамках единой деятельности.
Косвенные измерения развиваются на основе прямых измерений. Их сущность состоит в том, что они позволяют получить значение измеряемой величины на основе математической зависимости, не прибегая к сравнению с эталоном. Таким путём наука получает численные значения величин в условиях, когда процесс прямого измерения сложен, а также в условиях, когда прямое измерение принципиально невозможно. В отличие от прямого измерения косвенное не является уже эмпирической процедурой, а представляет переход от эмпирического исследования к теоретическому (см. Теория). В своих наиболее простых формах оно непосредственно примыкает к эмпирическому исследованию, но в сложных формах косвенное измерение непосредственно связано с теоретическими расчётами.
Косвенные и прямые измерения взаимодействуют между собой в ходе развития науки, уточняя и проверяя друг друга. В частности, точность прямых измерений возрастает благодаря поправкам, вносимым за счёт применения косвенных измерений. В свою очередь отыскание новых уравнений и проведение всё более сложных косвенных измерений опирается на прямые измерения.
Процедура измерения подразумевает присвоение рубрикационных символов наблюдаемым объектам в соответствии с некоторым правилом или эталоном. Символы могут быть просто метками, представляющими классы или категории объектов в популяции, или числами, характеризующими степень выраженности у объекта измеряемого свойства. Символы-метки могут также представлять собой числа, но при этом не обязательно нести в себе характерную «числовую» информацию. Алгоритм (правило) присвоения символа объекту называется измерительной шкалой. Как всякая модель, измерительные шкалы должны корректно отражать изучаемые характеристики объекта и, следовательно, иметь те же свойства, что и измеряемые показатели. Различают четыре основных типа измерительных шкал, получившие следующие названия: шкала наименований; шкала порядка; шкала интервалов; шкала отношений.
Шкала наименований, или номинальная шкала, используется только для обозначения принадлежности объекта к одному из нескольких непересекающихся классов. Приписываемые объектам символы, которые могут быть цифрами, буквами, словами или некоторыми специальными символами, представляют собой только метки соответствующих классов. Характерной особенностью номинальной шкалы является принципиальная невозможность упорядочить классы по измеряемому признаку — к ним нельзя прилагать суждения типа «больше — меньше», «лучше — хуже» и так далее. Единственным отношением, определённым на шкале наименований, является отношение тождества: объекты, принадлежащие к одному классу, считаются тождественными, к разным классам — различными. Если при этом классы обозначены цифрами, что удобно при компьютерной обработке, то такие цифры не являются числами в прямом смысле этого слова и не обладают свойствами чисел. В частности, к ним нельзя применять действия арифметики. Частным случаем шкалы наименований является дихотомическая шкала, с помощью которой фиксируют наличие у объекта определённого качества или его соответствие некоторому требованию. По установившейся традиции при измерении дихотомических показателей применяют следующие обозначения: 0 — если объект не обладает требуемым свойством, 1 — если обладает.
Шкала порядка позволяет не только разбивать объекты на классы, но и упорядочивать классы по возрастанию (убыванию) изучаемого признака. На шкале порядка, кроме отношения тождества, определено также отношение порядка: об объектах, отнесённых к одному из классов, известно не только то, что они тождественны друг другу, но также, что они обладают измеряемым свойством в большей или меньшей степени, чем объекты из других классов. Но при этом порядковые шкалы не могут ответить на вопрос, на сколько (во сколько раз) это свойство выражено сильнее у объектов из одного класса, чем у объектов из другого класса. Упорядоченные классы достаточно часто нумеруют в порядке возрастания (убывания) измеряемого признака. Однако в силу того, что различия в значениях признака точному измерению не поддаются, к шкалам порядка, также как к номинальным шкалам, действия арифметики не применяют. Исключение составляют оценочные шкалы, при использовании которых объект получает (или сам выставляет) некоторые оценки, исходя из определённого числа баллов, поэтому для них считается вполне допустимым рассчитывать, например, средний балл. Другим частным случаем шкалы порядка является ранговая шкала, применяемая обычно в тех случаях, когда изучаемый признак заведомо не поддаётся объективному измерению или когда порядок объектов более важен, чем точная величина различий между ними. В силу того, что символы, присваиваемые объектам в соответствии с порядковыми и номинальными шкалами, не обладают числовыми свойствами, даже если записываются с помощью цифр, эти два типа шкал получили общее название качественных в отличие от количественных шкал интервалов и отношений.
Шкала интервалов и шкала отношений имеют общее свойство, отличающее их от качественных шкал: они предполагают не только определённый порядок между объектами или их классами, но и наличие некоторой единицы измерения, позволяющей определять, на сколько значение признака у одного объекта больше или меньше, чем у другого. Другими словами, на обеих количественных шкалах, помимо отношений тождества и порядка, определено отношение разности, к ним можно применять арифметические действия сложения и вычитания. Естественно, что символы, приписываемые объектам в соответствии с количественными измерительными шкалами, могут быть только числами. Основное различие между этими двумя шкалами состоит в том, что шкала отношений имеет абсолютный нуль, не зависящий от произвола наблюдателя и соответствующий полному отсутствию измеряемого признака, а на шкале интервалов нуль устанавливается произвольно или в соответствии с некоторыми условными договорённостями. Шкала оценок с заданным количеством баллов часто рассматривается как интервальная в предположении, что минимальное и максимальное положения на шкале соответствуют некоторым крайним оценкам или позициям, и интервалы между баллами шкалы имеют одинаковую длину. К шкалам отношений относится абсолютное большинство измерительных шкал, применяемых в науке, технике и быту. Шкала отношений является единственной шкалой, на которой определено отношение отношения, то есть разрешены арифметические действия умножения и деления и, следовательно, возможен ответ на вопрос, во сколько раз одно значение больше или меньше другого. Количественные шкалы делятся на дискретные и непрерывные. Дискретные показатели измеряются в результате счёта. Непрерывные показатели предполагают, что измеряемое свойство изменяется непрерывно, и при наличии соответствующих приборов и средств могло бы быть измерено с любой необходимой степенью точности. Результаты измерения непрерывных показателей довольно часто выражаются целыми числами, но это связано не с природой самих показателей, а с характером измерительных процедур.
Целью измерения является получение формальной модели, исследование которой могло бы, в определённом смысле, заменить исследование самого объекта. Как всякая модель, измерение приводит к потере части информации об объекте и/или её искажению, иногда значительному. Потеря и искажение информации приводит к возникновению ошибок измерения, величина которых может обусловливаться различными факторами, влияющими на процесс измерения. Среди наиболее распространённых факторов — несовершенство измерительной аппаратуры, естественные недостатки органов чувств, неполнота знаний о наблюдаемых явлениях, связанных с процедурой измерения, недостаточный уровень квалификации наблюдателя и другие, вызывающие неизбежные погрешности в результатах. Сами по себе погрешности становятся предметом исследования ради достижения точности измерения. Различают два класса погрешностей — систематические и случайные. При исследовании отдельно взятого объекта ошибки обоих типов представляют одинаковую опасность. При статистическом обобщении информации о некоторой совокупности измеренных объектов случайные ошибки, в известной степени, взаимно «погашаются», в то время как систематические ошибки могут привести к значительному смещению результатов. Для изучения причин неточностей проводятся многократные повторения измерений. Если погрешности при этом остаются, то это указывает на систематичность погрешностей. Такие погрешности происходят, например, от неверной градуировки приборов или от происшедшего изменения температуры применяемых эталонов, а также температуры приборов. Случайные погрешности весьма неопределённы по величине и по своим причинам. Случайность погрешностей обнаруживается в тех случаях, когда при тщательном измерении получаются различные результаты в последних значащих цифрах. Такого рода погрешности вызывают необходимость применения статистических методов.
В целом, наука с каждым новым этапом своего развития совершенствует средства и способы измерения, создавая новые методы расчёта, новые измерительные приборы и эталоны. Благодаря этому становится возможным изучить ранее не исследованные типы процессов и открыть новые законы природы. В свою очередь, познание законов природы всегда приводит к совершенствованию способов и инструментов измерения. Таким образом, в науке постоянно происходит овеществление добытых знаний в новых средствах измерения и разработка на основе ранее открытых законов природы новых способов измерения. Это позволяет научному познанию подниматься на более высокие ступени своего развития.