Что принято в физике за единицу длины дайте ее определение в си
Основные единицы СИ
СИ (SI, фр. Le Système International d’Unités ), (Система Интернациональная) — международная система единиц, современный вариант метрической системы. Она определяет семь основных единиц измерения, являющихся основой для остальных единиц СИ. Основные единицы измерения СИ и их величины [1] :
Многие другие единицы измерения, такие как литр, формально не входят в СИ, но они «допускаются для использования совместно с СИ».
Содержание
14я Конференция по мерам и весам (1971г, Резолюция 3)
16я Конференция по мерам и весам (1979, Резолюция 3)
Будущие изменения
С момента принятия Метрической конвенция в 1875 г. определения основных единиц измерения несколько раз изменялись. С переопределения метра 1960, килограмм остался последней единицей, которая определяется не как свойство природы, а как физический артефакт. Тем не менее, моль, ампер и кандела тоже привязаны к платиново-иридиевым эталонам, которые находятся в хранилище. Длительное время метрология искала пути для определения килограмма фундаментальными константами, также, как метр определяется через скорость света.
В 21-м веке Конференция по мерам и весам (1999 г.) предложил официально приложить все усилия и рекомендовала «Национальным лабораториям продолжить исследования для привязки массы к фундаментальным или массовым константам для определения массы килограмма.» Большинство ожиданий связывают с постоянной Планка и числом Авогадро.
В 2005 году Международный комитет мер и весов (CIPM) утвердив подготовку к новым определениям килограмма, ампера и кельвина, также отметил возможность нового определения моля основанное на числе Авогадро [4] 23-я Генеральная конференция по мерам и весам (CGPM) в 2007 году решила отложить узаконивание любых изменений до следующей конференции в 2011 году. [5]
История человечества насчитывает несколько тысяч лет, и на разных этапах развития почти каждый народ использовал какие-то свои условные системы отсчетов. Сейчас Международная система единиц (СИ) для всех стран стала обязательной.
Система содержит семь основных единиц измерения: секунда — времени, метр — длины, килограмм — массы, ампер — силы электрического тока, кельвин — термодинамической температуры, кандела — силы света и моль — количества вещества. Предусмотрены две дополнительные единицы: радиан — для плоского угла и стерадиан — для телесного угла.
СИ происходит от французского Systeme Internationale, и означает международную систему единиц.
Как определяли метр
В 17 веке, с развитием в Европе науки, начали все чаще звучать призывы к тому, чтобы ввести универсальную меру или католический метр. Это была бы десятичная мера, основанная на естественном явлении, и не зависящая от постановлений находящегося у власти человека. Такая мера заменила бы собой множество разнообразных систем мер, существовавших тогда.
Британский философ Джон Уилкинс предлагал принять за единицу длины длину маятника, полупериод которого был бы равен одной секунде. Однако в зависимости от места измерений значение получалось неодинаковым. Французский астроном Жан Рише установил этот факт во время путешествия в Южную Америку (1671 — 1673).
В 1790 году министр Талейран предложил измерить эталонную длину расположив маятник на строго установленной широте между Бордо и Греноблем — 45° северной широты. В результате, 8 мая 1790 года, на Французском Национальном собрании постановили, что метр — это длина маятника с полупериодом колебаний на широте 45°, равным 1 с. В соответствии с сегодняшней СИ, тот метр был бы равен 0,994 м. Это определение, однако, не устроило научную общественность.
30 марта 1791 года Французская академия наук приняла предложение задать эталонный метр как часть Парижского меридиана. Новая единица должна была быть одной десятимиллионной частью расстояния от экватора до Северного полюса, то есть одной десятимилионной долей четверти окружности Земли, измеренной вдоль Парижского меридиана. Это и стало называться «Метр подлинный и окончательный».
7 апреля 1795 Национальный Конвент принял закон о введении метрической системы во Франции и поручил комиссарам, в число которых входили Ш. О. Кулон, Ж. Л. Лагранж, П.-С. Лаплас и другие учёные, экспериментально определить единицы длины и массы.
В период с 1792 по 1797 год, по решению революционного Конвента, французские учёные Деламбр (1749—1822 гг.) и Мешен (1744—1804 гг.) за 6 лет измерили таки дугу парижского меридиана длиной в 9°40′ от Дюнкерка до Барселоны, проложив цепь из 115 треугольников через всю Францию и часть Испании.
Впоследствии, однако, выяснилось, что из-за неправильного учёта полюсного сжатия Земли эталон оказался короче на 0,2 мм. Таким образом, длина меридиана в 40000 км лишь приблизительна. Первый прототип эталона метра из латуни, тем не менее, был в 1795 году изготовлен. Следует отметить, что единица массы (килограмм, определение которого было основано на массе одного кубического дециметра воды), тоже была привязана к определению метра.
История становления системы СИ
22 июня 1799 года во Франции были изготовлены два эталона из платины — эталонный метр и эталонный килограмм. Эту дату можно справедливо считать днем начала развития нынешней системы СИ.
В 1860-х под влиянием Максвелла и Томсона было сформулировано требование, согласно которому базовые и производные единицы необходимо согласовть между собой. В итоге система СГС была введена в 1874 году, при этом были выделены и приставки для обозначения дольных и кратных единиц от микро до мега.
В 1889 году на первой конференции ГКМВ была принята система МКС, основанная на метре, килограмме и секунде, сходная с СГС, однако единицы МКС виделись более приемлемыми в силу удобства из практического использования. Позже будут введены единицы для оптики и электричества.
В 1948 году, по предписанию французского правительства и Международного союза теоретической и прикладной физики, девятая Генеральная конференция по мерам и весам выступила с поручением Международному комитету по мерам и весам предложить, с целью унификации системы единиц измерения, свои идеи по созданию единой системы единиц измерения, которая смогла бы быть принятой всеми государствами участниками Метрической конвенции.
В 1960 году был принят стандарт, который впервые назвали «Международная система единиц», и назначили сокращение «SI» (СИ).
Основными единицами остались те же шесть единиц: метр, килограмм, секунда, ампер, градус Кельвина и кандела, две дополнительных единиц (радиан и стерадиан) и двадцать семь важнейших производных, не предопределяя другие производные единицы, могущие быть добавленными впоследствии. (Русскоязычное сокращение «СИ» можно расшифровать как «Система интернациональная»).
Все указанные шесть основных единиц, обе дополнительные единицы и двадцать семь важнейших производных единиц полностью совпадали с соответствующими основными, дополнительными и производными единицами, принятыми на тот момент в СССР государственными стандартами на единицы измерений для систем МКС, МКСА, МКСГ и МСС.
В 1963 году в СССР, по ГОСТу 9867-61 «Международная система единиц», СИ была принята в качестве предпочтительной для областей народного хозяйства, в науке и технике, а также для преподавания в учебных заведениях.
В 1968 году на тринадцатой ГКМВ единица «градус Кельвина» была заменена на «кельвин», также было принято обозначение «К». Кроме того было принято новое определение секунды: секунда — это интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного квантового состояния атома цезия-133. В 1997 году будет принято уточнение, согласно которому этот интервал времени относится к атому цезия-133 в покое при 0 К.
В 1983 году на 17 ГКМВ было дано новое определение метра. Метр — это длина пути, проходимого светом в вакууме за (1 / 299 792 458) секунды.
В 2009 году Правительством РФ было утверждено «Положение о единицах величин, допускаемых к применению в Российской Федерации», а в 2015 году в него были внесены изменения, призванные исключить «срок действия» некоторых внесистемных единиц.
Основные достоинства системы СИ заключаются в следующем:
1. Унификация единиц физических величин для различных видов измерения.
Система СИ позволяет иметь для каждой физической величины, встречающейся в различных областях техники, одну общую для них единицу, например, джоуль для всех видов работы и количества теплоты вместо применяемых в настоящее время разных единиц для этой величины (килограмм — сила — метр, эрг, калория, ватт-час и др.).
2. Универсальность системы.
Единицы системы СИ охватывают все отрасли науки, техники и народного хозяйства, исключая необходимость применения каких-либо других единиц, и в целом представляют собой единую систему, общую для всех областей измерений.
3. Связность (когерентность) системы.
Во всех физических уравнениях, определяющих производные единицы измерения, коэффициент пропорциональности — всегда безразмерная величина, равная единице.
Система СИ позволяет значительно упростить операции по решению уравнений, проведению расчетов и составлению графиков и номограмм, так как отпадает необходимость применения значительного количества переводных коэффициентов.
4. Стройность и связность системы СИ значительно облегчает изучение физических закономерностей и педагогический процесс при изучении общенаучных и специальных дисциплин, а также вывод различных формул.
5. Принципы построения системы СИ обеспечивают возможность образования по мере надобности новых производных единиц и, следовательно, перечень единиц этой системы открыт для дальнейшего расширения.
Назначение системы СИ и ее роль в физике
Большинство стран используют в технике именно единицы системы СИ, даже если в повседневной жизни пользуются традиционными для этих территорий единицами. В США, например, привычные единицы определяются через единицы системы СИ при помощи фиксированных коэффициентов.
Величина | Обозначение | ||
русское наименование | русское | международное | |
Плоский угол | радиан | рад | rad |
Телесный угол | стерадиан | ср | sr |
Температура Цельсия | градус Цельсия | о С | о С |
Частота | герц | Гц | Hz |
Сила | ньютон | Н | N |
Энергия | джоуль | Дж | J |
Мощность | ватт | Вт | W |
Давление | паскаль | Па | Pa |
Световой поток | люмен | лм | lm |
Освещенность | люкс | лк | lx |
Электрический заряд | кулон | Кл | C |
Разность потенциалов | вольт | В | V |
Сопротивление | ом | Ом | R |
Электроемкость | фарад | Ф | F |
Магнитный поток | вебер | Вб | Wb |
Магнитная индукция | тесла | Тл | T |
Индуктивность | генри | Гн | H |
Электрическая проводимость | сименс | См | S |
Активность радиоактивного источника | беккерель | Бк | Bq |
Поглощенная доза ионизирующего излучения | грей | Гр | Gy |
Эффективная доза ионизирующего излучения | зиверт | Зв | Sv |
Активность катализатора | катал | кат | kat |
Исчерпывающее подробное описание системы СИ в официальном виде изложено в издаваемой с 1970 года «Брошюре СИ» и в дополнении к ней; эти документы опубликованы на официальном сайте Международного бюро мер и весов. Начиная с 1985 года данные документы выпускаются на английском и французском языках, и всегда переводятся на ряд языков мира, хотя официальный язык документа — французский.
Точное официальное определение системы СИ формулируется следующим образом: «Международная система единиц (СИ) — система единиц, основанная на Международной системе величин, вместе с наименованиями и обозначениями, а также набором приставок и их наименованиями и обозначениями вместе с правилами их применения, принятая Генеральной конференцией по мерам и весам (CGPM)».
Система СИ определяют семь основных единиц физических величин и их производные, а также приставки к ним. Регламентированы стандартные сокращения обозначений единиц и правила записи производных. Основных единиц, как и прежде, семь: килограмм, метр, секунда, ампер, кельвин, моль, кандела. Основные единицы отличаются независимыми размерностями, и не могут быть получены из других единиц.
Перед названием единицы можно использовать приставку, как например миллиметр — тысячная доля метра, а километр — тысяча метров. Приставка означает, что единицу необходимо разделить или умножить на целое число, являющееся конкретной степенью числа десять.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Система СИ (единицы измерения)
В 1875 г. Метрической Конференцией было основано Международное Бюро Мер и Весов его целью стало создание единой системы измерений, которая нашла бы применение во всем мире. Было решено, за основу принять метрическую систему, которая появилась еще во времена Французской революции и основывалась на метре и килограмме. Позднее были утверждены эталоны метра и килограмма. С течением времени система единиц измерения развивалась, в настоящее время в ней принять семь основных единиц измерения. В 1960 г. эта система единиц получила современное название Международная система единиц ( система СИ) (Systeme Internatinal d’Unites (SI)). Система СИ не обладает статичностью, она развивается в соответствии с требованиями, которые в настоящее время предъявляются к измерениям в науке и технике.
Основные единицы измерения Международной системы единиц
Основными единицами в системе СИ стали единицы выше названных величин:
\[\left[l\right]=м;;\ \left[m\right]=кг;;\ \left[t\right]=с;\ \left[I\right]=A;;\ \left[T\right]=K;;\ \ \left[\nu \right]=моль;;\ \left[I_v\right]=кд\ (кандела).\]
Эталоны основных единиц измерения в СИ
Приведем определения эталонов основных единиц измерения как это сделано в системе СИ.
Эталоном массы для СИ является гиря, имеющая форму прямого цилиндра, высота и диаметр которого 39 мм, состоящего из сплава платины и иридия массой в 1 кг.
Одной секундой (с) называют интервал времени, который равен 9192631779 периодам излучения, который соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия (133).
Наука развивается, совершенствуется измерительная техника, определения единиц измерения пересматривают. Чем выше точность измерений, тем больше требований к определению единиц измерения.
Производные величины системы СИ
Все остальные величины рассматриваются в системе СИ как производные от основных. Единицы измерения производных величин определены как результат произведения (с учетом степени) основных. Приведем примеры производных величин и их единиц в системе СИ.
В системе СИ имеются и безразмерные величины, например, коэффициент отражения или относительная диэлектрическая проницаемость. Эти величины имеют размерность единицы.
Система СИ, единицы измерения кратные и дольные
В Международной системе единиц имеется набор приставок к единицам измерения, которые применяют, если численные значения рассматриваемых величин существенно больше или меньше, чем единица системы, которая применяется без приставки. Эти приставки используются с любыми единицами измерения, в системе СИ они являются десятичными.
Приведем примеры таких приставок (табл.3).
При написании приставку и наименование единицы пишут слитно, так, что приставка и единица измерения образуют единый символ.
Отметим, что единица массы в системе СИ (килограмм) исторически уже имеет приставку. Десятичные кратные и дольные единицы килограмма получают соединением приставки к грамму.
Внесистемные единицы
Система СИ универсальна и является удобной в международном общении. Практически все единицы, единицы не входящие в систему СИ можно определить, используя термины системы СИ. Применение системы СИ является предпочтительным в научном образовании. Однако имеются некоторые величины, которые не входят в СИ, но широко используются. Так, единицы времени такие как минута, час, сутки являются частью культуры. Не которые единицы используют по исторически сложившимся причинам. При использовании единиц, которые не принадлежат системе СИ необходимо указывать способы их перевода в единицы СИ. Пример единиц указан в табл.4.
Примеры задач с решением
Задание. Приведите примеры известных Вам внесистемных единиц и соотношение их с единицами системы СИ.
Решение. Примерами внесистемных единиц являются:
Решение. Сделаем рисунок.
Для того чтобы ответить на вопрос вспомним формулу для вычисления величины скорости при равномерном движении:
Так, мы получили точную скорость света в вакууме.
Таблица единиц измерения
Основная особенность используемых в настоящее время систем единиц состоит в том, что между единицами разных величин имеются определенные соотношения. Эти соотношения установлены теми физическими законами (определениями), которыми связываются между собой измеряемые величины. Так, единица скорости выбрана таким образом, что она выражается через единицы расстояния и времени. При выборе единиц скорости используется определение скорости. Единицу силы, например, устанавливают при помощи второго закона Ньютона.
При построении определенной системы единиц, выбирают несколько физических величин, единицы которых устанавливают независимо друг от друга. Единицы таких величин называют основными. Единицы остальных величин выражают через основные, их называют производными.
Таблицы единиц измерения
Основными единицами в системе СИ стали единицы выше названных величин:
\[\left[l\right]=м;;\ \left[m\right]=кг;;\ \left[t\right]=с;;\ \left[I\right]=A;;\ \left[T\right]=K;;\ \ \left[\nu \right]=моль;;\ \left[I_v\right]=кд\ (кандела).\]
Для основных и производных единиц измерения в системе СИ используют дольные и кратные приставки в таблице 1 приведены некоторые из них
В таблице 2 сведена главная информация об основных единицах системы СИ.
В таблице 3 приведем некоторые производные единицы измерения системы СИ.
В системе СИ существуют производные единицы измерения, которые имеют собственные названия, которые на самом деле являются компактными формами комбинаций основных величин. В таблице 4 приведены примеры подобных единиц системы СИ.
Для каждой физической величины имеется только одна единица СИ, но одна и та же единица может применяться для нескольких величин. Например, в джоулях измеряют работу и энергию. Существуют безразмерные величины.
Имеются некоторые величины, которые не входят в СИ, но широко используются. Так, единицы времени такие как минута, час, сутки являются частью культуры. Не которые единицы используют по исторически сложившимся причинам. При использовании единиц, которые не принадлежат системе СИ необходимо указывать способы их перевода в единицы СИ. Пример единиц указан в табл.5.
Примеры задач с решением
Решение.Единицу измерения силы устанавливают при помощи второго закона Ньютона:
Это означает, что единицы измерения силы получают, используя единицы измерения массы и ускорения:
В системе СИ ньютон получается равным:
В системе СГС единица измерения силы (дина) равна:
Переведем метры в сантиметры, а килограммы в граммы в выражении (1.3):
Решение.
Для решения задачи запишем кинематические уравнения движения, считая ускорение с которым автомобиль уменьшал скорость постоянным:
уравнение для скорости:
уравнение для перемещения:
В проекции на ось X и с учетом того, что конечная скорость автомобиля равна нулю, а торможение считаем автомобиль начал из начала координат выражения (2.1) и (2.2) запишем как:
Из формулы (2.3) выразим ускорение и подставим его в (2.4), получим:
Для этого воспользуемся таблицей 1, где видим, что приставка кило означает умножение 1 метра на 1000, а так как в 1ч=3600 с (табл. 4), то в системе СИ начальную скорость будет равна:
\[v_0=72\ \frac<км><ч>=72\cdot 1000:3600=20\frac<м><с>.\]
Основные единицы системы СИ
Килограмм равен массе международного прототипа килограмма.
Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.
Моль равен количеству вещества, в составе которого содержится столько же структурных элементов, сколько атомов в изотопе углерода-12 массой 0,012 кг.
Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.
Таблица 1. Основные единицы СИ | |||
---|---|---|---|
Величина | Единица | Обозначение | |
Наименование | русское | международное | |
Длина | метр | м | m |
Масса | килограмм | кг | kg |
Время | секунда | с | s |
Сила электрического тока | ампер | А | A |
Термодинамическая температура | кельвин | К | K |
Сила света | кандела | кд | cd |
Количество вещества | моль | моль | mol |
Дополнительные единицы СИ | |||
Величина | Единица | Обозначение | |
Наименование | русское | международное | |
Плоский угол | радиан | рад | rad |
Телесный угол | стерадиан | ср | sr |
Таблица 2. Производные единицы СИ, имеющие собственные наименования | ||||
---|---|---|---|---|
Величина | Единица |