Чем измерить частоту звука
Акустические измерения. Измеряем АЧХ подручными средствами
Я купил bluetooth-наушники Motorola Pulse Escape. Звучание в целом понравилось, но остался непонятен один момент. Согласно инструкции, в них имеется переключение эквалайзера. Предположительно, наушники имеют несколько вшитых настроек, которые переключаются по кругу. К сожалению, я не смог определить на слух, какие там настройки и сколько их, и решил выяснить это при помощи измерений.
Итак, мы хотим измерить амплитудно-частотную характеристику (АЧХ) наушников — это график, который показывает, какие частоты воспроизводятся громче, а какие — тише. Оказывается, такие измерения можно произвести «на коленке», без специальной аппаратуры.
Нам понадобится компьютер с Windows (я использовал ноутбук), микрофон, а также источник звука — какой-нибудь плеер с bluetooth (я взял смартфон). Ну и сами наушники, конечно.
(Под катом — много картинок).
Подготовка
Вот такой микрофон у меня нашёлся среди старых гаджетов. Микрофон копеечный, для разговоров, не предназначенный ни для записи музыки, ни тем более не для измерений.
Конечно, такой микрофон имеет свою АЧХ (и, забегая вперёд, диаграмму направленности), поэтому сильно исказит результаты измерений, но для поставленной задачи подойдёт, потому что нас интересуют не столько абсолютные характеристики наушников, сколько то, как они изменяются при переключении эквалайзера.
У ноутбука имелся всего один комбинированный аудиоразъём. Подключаем туда наш микрофон:
Windows спрашивает, что за прибор мы подключили. Отвечаем, что это микрофон:
Windows — немецкий, извините. Я ведь обещал использовать подручные материалы.
Тем самым единственный аудиоразъём оказывается занятым, поэтому и нужен дополнительный источник звука. Скачиваем на смартфон специальный тестовый аудиосигнал — так называемый розовый шум. Розовый шум — это звук, содержащий весь спектр частот, причём равной мощности по всему диапазону. (Не путайте его с белым шумом! У белого шума другое распределение мощности, поэтому его нельзя использовать для измерений, это грозит повреждением динамиков).
Настраиваем уровень чувствительности микрофона. Нажимаем правую кнопку мыши на значке громкоговорителя в Windows и выбираем регулировку устройств записи:
Находим наш микрофон (у меня он получил название Jack Mic):
Выбираем его в качестве устройства записи (птичка в зелёном кружочке). Выставляем ему уровень чувствительности поближе к максимуму:
Microphone Boost (если есть) убираем! Это автоматическая подстройка чувствительности. Для голоса — хорошо, а при измерениях будет только мешать.
Устанавливаем на ноутбук измерительную программу. Я люблю TrueRTA за возможность видеть сразу много графиков на одном экране. (RTA — по-английски АЧХ). В бесплатной демо-версии программа измеряет АЧХ с шагом в октаву (то есть соседние точки измерения отличаются по частоте в 2 раза). Это, конечно, очень грубо, но для наших целей сойдёт.
При помощи скотча закрепляем микрофон около края стола, так чтобы его можно было накрыть наушником:
Важно зафиксировать микрофон, чтобы не сдвинулся в процессе измерений. Подсоединяем наушники проводом к смартфону и кладём одним наушником поверх микрофона, так чтобы плотно закрыть его сверху — примерно так наушник охватывает человеческое ухо:
Второй наушник свободно висит под столом, из него мы будем слышать включённый тестовый сигнал. Убеждаемся, что наушники лежат стабильно, их тоже нельзя сдвигать в процессе измерений. Можно начинать.
Измерения
Запускаем программу TrueRTA и видим:
Основная часть окна — поле для графиков. Слева от него находятся кнопки генератора сигналов, он нам не понадобится, потому что у нас внешний источник сигнала, смартфон. Справа — настройки графиков и измерений. Сверху — ещё кое-какие настройки и управление. Ставим белый цвет поля, чтобы лучше видеть графики (меню View → Background Color → White).
Выставляем границу измерений 20 Hz и количество измерений, скажем, 100. Программа будет автоматически делать указанное количество измерений подряд и усреднять результат, для шумового сигнала это необходимо. Выключаем отображение столбчатых диаграмм, пусть вместо них рисуются графики (кнопка сверху с изображением столбиков, отмечена на следующем скриншоте).
Сделав настройки, производим первое измерение — это будет измерение тишины. Закрываем окна и двери, просим детей помолчать и нажимаем Go:
Если всё сделано правильно, в поле начнёт вырисовываться график. Подождём, пока он стабилизируется (перестанет «плясать» туда-сюда) и нажмём Stop:
Теперь будем измерять настоящий тестовый сигнал. Включаем плеер на смартфоне, начав с малой громкости.
Дождавшись стабилизации графика, останавливаем измерение кнопкой Stop в программе. Плеер тоже пока останавливаем. Итак, что мы видим на графике? Неплохие басы (кроме самых глубоких), некоторый спад к средним частотам и резкий спад к верхним частотам. Напоминаю, что это не настоящая АЧХ наушников, свой вклад вносит микрофон.
Этот график мы возьмем в качестве эталонного. Наушники получали сигнал по проводу, в этом режиме они работают как пассивные динамики без всяких эквалайзеров, их кнопки не действуют. Занесём график в память номер 1 (через меню View → Save to Memory → Save to Memory 1 или нажав Alt+1). В ячейках памяти можно сохранять графики, а кнопками Mem1..Mem20 в верхней части окна включать или отключать показ этих графиков на экране.
Теперь отсоединяем провод (как от наушников, так и от смартфона) и подключаем наушники к смартфону по bluetooth, стараясь не сдвинуть их на столе.
Снова включаем плеер, запускаем измерение кнопкой Go и, регулируя громкость на смартфоне, приводим новый график по уровню к эталонному. Эталонный график изображён зелёным, а новый — синим:
Останавливаем измерение (плеер можно не выключать, если не раздражает шипение из свободного наушника) и радуемся, что по bluetooth наушники выдают такую же АЧХ, как по проводу. Заносим график в память номер 2 (Alt+2), чтоб не ушёл с экрана.
Теперь переключаем эквалайзер кнопками наушников. Наушники рапортуют бодрым женским голосом «EQ changed». Включаем измерение и, дождавшись стабилизации графика, видим:
Хм. Кое-где есть отличия в 1 децибел, но это как-то несерьёзно. Скорее похоже на погрешности измерений. Заносим и этот график в память, переключаем эквалайзер ещё раз и после измерения видим ещё один график (если очень хорошо присмотреться):
Ну, вы уже поняли. Сколько я ни переключал эквалайзер на наушниках, никаких изменений это не давало!
На этом, в принципе, можно заканчивать работу и делать вывод: у этих наушников работающего эквалайзера нет. (Теперь понятно, почему его не получалось услышать).
Однако тот факт, что мы не увидели никаких изменений в результатах, огорчает и даже вызывает сомнения в правильности методики. Может, мы измеряли что-то не то?
Бонусные измерения
Чтобы убедиться, что мы измеряли АЧХ, а не погоду на Луне, давайте покрутим эквалайзер в другом месте. У нас же есть плеер в смартфоне! Воспользуемся его эквалайзером:
И вот результат измерений:
Вот это другое дело! Новый график заметно отличается от старых. Занесём его тоже в память (у меня получился номер памяти 6) и найдём разность между новым графиком и эталонным, TrueRTA это умеет (меню Utilities → Difference):
Вычитаем из графика номер 6 график номер 1 и помещаем результат в память номер 12. Убираем остальные графики с экрана кнопочками Mem1, Mem2 и т. д., оставляем только Mem12:
Не правда ли, эта кривая приблизительно напоминает то, что обещал эквалайзер?
Выключаем эквалайзер, с ним всё понятно. А ещё я говорил вначале, что нельзя двигать наушники и микрофон между измерениями. А что будет, если сдвинуть на сантиметр?
Смотрите-ка, от сдвига график слегка изменился: басов поубавилось, верхов добавилось. Это говорит, скорее всего, о том, что у микрофона различная чувствительность к звукам, приходящим с разных направлений (это называется диаграммой направленности).
Проведём ещё один опыт: измерим звучание, отказавшись от закрытого объёма. Вот так:
Измерение уровня шума: методы, способы, необходимые инструменты и соответствие уровням ГОСТ
Измерять шум необходимо. Ведь существуют опасные шумовые уровни для человеческого здоровья. Например, шум в 70-90 децибел (дБ) – это потенциальная причина нарушения функций нервной системы. Шум, превышающий 100 дБ, отрицательно влияет на слух. А если параметры зашкаливают за 200 дБ, то ситуация крайне опасна и может привести к летальному исходу.
Пребывание людей в помещении получатся комфортным, если шумовой уровень не превосходит 55 дБ днем, а ночью – 45 дБ.
В каждом помещении должен быть определенный уровень. Это регламентировано нормативными документами. И для проверки на это соответствие регулярно измеряют шумовые уровни.
Рабочие зоны
В рабочих зонах на предприятиях промышленного назначения измерение уровня шума происходит минимум в трех точках. Микрофон, анализирующий шум, ставится над полом на высоте 150 см. Он направляется к шумовому источнику и отдаляется от сотрудника, осуществляющего измерение, минимум на 50 см.
При измерении шума выявляются следующие данные:
При этих замерах определяется, каковы уровни шума, а спектральная экспертиза в его октавных волнах не проводится.
Специалисты анализируют опасность шума по параметрам давления звука в дБА (обозначение интенсивности). При этом учитывают частотные средние геометрические данные.
Санитарные нормативы
Ниже предложена таблица, отражающая наибольшие уровни шума, разрешенные для различных помещений. Это такие уровни, которые в течение всего рабочего времени не должны приводить к проблемам со здоровьем.
Таблица 1. Шум проникает в помещение снаружи.
Параметры звукового давления
1) Зоны интеллектуального труда, приемные покои.
2) Управленческие помещения
3) Будки для дистанционного контроля
4) Те же будки, но с телефонной связью
5) Зоны точной сборки
6)Помещения с очень громкими операционно-вычислительными агрегатами
7) Рабочие зоны в заводских цехах
Пункты 1-4 контролируются при условиях, что шум образуется снаружи и проникает в помещения
Пункты 5 и 6 необходимы к выполнению, когда шум образуется в помещениях
Методики
Измерение уровня шума обычно происходит по субъективному или объективному методу. Первый основан на использовании фонометров. Они измеряют шум, сопоставляя его с чистым тоном конкретной частоты. Ее генерирует специальный аппарат. Измерительные операции довольно сложны и дают результаты с ограниченным использованием.
Второй метод подразумевает применение шумомеров. Они конвертируют звуковые волны в электрические. После чего сигнал следует на измеритель. К выходному участку усилителя можно присоединять разные фильтры для корректировки сигнала. Они позволяют получить более точные данные об интенсивности шумов конкретных частот.
На сегодняшний день второй метод измерения уровней шума все больше вытесняет первый. И это логично. Ведь работать с фонометрами довольно трудно, и полученные результаты сложно применять.
Принцип и устройство шумомера
Этот прибор производит замер шума в дБ. В его устройстве заложены принципы, создающие точную зависимость между его показателями и давлением звука. Эти факторы воспринимает слуховой аппарат. Между шумовым уровнем и электрическим сигналом существует пропорциональность.
У аппарата имеется шкала с делениями в дБ и опциональное дополнение в виде штатива.
Есть множество моделей шумомеров. У них разный внешний вид, габариты, стоимость и производитель. Но есть и единая классификация.
Общая классификация шумомеров
Она распределяет прибор по уровню точности. Существует 4 категории:
Различают следующие классы фильтров шумомеров:
Модели для промышленных условий
Приборы для измерения уровня шума в промышленных условиях отличаются по типам. Наиболее популярными являются такие модели:
Октавные анализаторы
Для исследования спектральной структуры шума используются октавные анализаторы. Для вычисления давления звука предназначены октавные полосы.
В них действует следующий принцип: их верхние предельные частоты вдвое уступают нижним предельным частотам. Например: 40–80, 70-140 и т. д.
Характеристика октавной полосы – среднегеометрическая частота f. Она получается из указанных предельных частот, которые обозначаются так:
Среднегеометрическая частота определяется по формуле: f сред =√ f1 f2
Квартирный вопрос
Проводить измерение уровня шума и вибрации в квартире и доме также необходимо. Для процедуры применяются модели третьей категории точности. Они отличаются демократичной ценой и легкостью использования.
Сначала нужно изучить режимы работы устройства. Как правило, их три:
Варианты питания прибора: сеть, аккумулятор, батарейки.
Обычно комплект не обходится без чехла и штатива. В некоторых аппаратах есть карта памяти. В ней содержатся реестр предыдущих показателей аппарата.
Применение домашнего шумомера
Проводить измерение уровня шума с помощью этого прибора легко. Он просто подносится к шумовому источнику и включается. Микрофон должен быть открытым. Прибор работает несколько минут, улавливает самый высокий параметр и останавливается на нем.
На дисплее отображается результат экспертизы в децибелах.
Метод онлайн
Наше время – это время прогресса и высоких технологий. Сегодня практически у всех есть компьютер или смартфон. С помощью них тоже можно производить необходимые измерения уровня шума. Здесь главным условием является установка специального приложения. Второй вариант – отыскать шумомер онлайн (ввести такой запрос в поисковике). На ресурсе также будет выложен подробный инструктаж, как нужно действовать.
Это довольно экономичный метод. Он позволяет не приобретать шумомер. Но здесь есть свои тонкости? Показатели на ПК, ноутбуке или смартфоне могут существенно отличаться.
На точность измерительных операций влияют параметры и качество микрофона вашего устройства. Если вас смущает сей факт, то работайте с цифровым шумомером.
Можно приобрести серьезный микрофон, присоединить его к компьютеру. И тогда измерение шума в домашних условиях будет проходить еще легче.
Проверка звукоизоляции
Двери и окна – те элементы, через которые в квартиру могут проникать разные шумы. И поэтому уровень их звукоизоляции имеет большее значение для комфортного проживания.
Этот уровень можно узнать с помощью несложного тестирования. Здесь необходим какой-нибудь шумовой источник. Можно просто включить музыку на телефоне и закрыть дверь.
После чего включается шумомер, проводится измерение, открывается дверь и операция повторяется. У вас получится два показателя прибора. Из большего показателя отнимите меньший. Это и есть уровень изоляции.
Для лучшей точности удостоверьтесь, что в квартире отсутствуют лишние шумы. Еще нужно проверить, что звук не проходит сквозь стены.
Измерения переменного напряжения звуковой частоты мультиметрами М-832
Вряд ли будет преувеличением сказать, что тестер семейства М-83х есть у каждого радиолюбителя. Простой, доступный, дешёвый. Вполне достаточный для электрика.
Но для радиолюбителя он имеет изъян при измерениях переменного напряжения. Во-первых, малую чувствительность, во-вторых, предназначен для измерений напряжений частотой 50 Гц. Часто у начинающего любителя нет других приборов, а хочется измерить, например, напряжение на выходе усилителя мощности и оценить его АЧХ. Можно ли это сделать?
В интернете все повторяют одно и то же – «не выше 400 Гц». Так ли это? Давайте посмотрим.
Содержание / Contents
Судя по имеющимся данным, многочисленные приборы семейства М-83х или D-83x собраны практически по одной схеме, поэтому высока вероятность того, что результаты измерений будут близки. Кроме того, в данном случае меня мало интересовала абсолютная погрешность данного тестера, интересовали только его показания в зависимости от частоты сигнала.
Лучше было бы сделать ещё серию измерений с мощным УНЧ нагруженным на повышающий трансформатор, но не думаю, что результаты изменятся разительно.
Для удобства оценки АЧХ в дБ выбран уровень 0 дБ на пределе 10 В вольтметра В3-38. При изменении частоты сигнала уровень чуть подстраивался, но изменения не превышали долей дБ, ими можно пренебречь.
↑ Результаты
Для получения табличных результатов в дБ на выходе генератора устанавливался уровень напряжения, полученного для каждой частоты, а разность в дБ считывалась и заносилась в таблицу. Некоторые неточности из-за округления в 0,5 дБ показаний лампового вольтметра и округления последней цифры показаний тестера. Считаю, в данном случае систематическую ошибку в 1 дБ вполне допустимой т. к. на слух она неощутима.
↑ Вывод
Для того чтобы утверждать, что поправки годятся для всех тестеров, нужно собрать статистику. К сожалению, мешком тестеров не располагаю.
Не надо забывать, что тестер измеряет переменное напряжение по схеме однополупериодного выпрямителя с его недостатками, такими как возможность измерений только синусоидального напряжения без постоянной составляющей, при малом измеряемом напряжении погрешность будет расти.
↑ Как можно улучшить тестер М-832 для измерений переменных напряжений?
Можно поставить дополнительный переключатель пределов «200-20 В» и ещё один резистор шунта. Но это требует разборки и доработки тестера, надо разбираться в схеме и иметь прибор для калибровки. Считаю, что это нецелесообразно.
Лучше сделать отдельную приставку, усиливающую и выпрямляющую напряжение. Выпрямленное напряжение подавать на тестер, включённый на измерение постоянного напряжения.
Но это тема для другой статьи.
↑ Файлы
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Что такое звук: его громкость, кодирование и качество
Еще рассмотрим дискретизацию, форматы и мощность звука. Но сначала дадим определение музыки, как упорядоченному звуку — противоположность неупорядоченному хаотическому, который мы воспринимаем, как шум.
Что такое звук
Даже при разговоре вы слышите своего собеседника потому, что он воздействует на воздух. Также, когда вы играете на музыкальном инструменте, бьете ли вы по барабану или дергаете струну, вы производите этим колебания определенной частоты, которой в окружающем воздухе производит звуковые волны.
Звуковые волны бывают упорядоченные и хаотические. Когда они упорядоченные и периодические (повторяются через какой-то промежуток времени), мы слышим определенную частоту или высоту звука.
То есть мы можем определить частоту, как количество повторения события в заданный промежуток времени. Таким образом, когда звуковые волны хаотичны, мы воспринимаем их как шум.
Но когда волны упорядочены и периодически повторяются, то мы можем измерить их количеством повторяющихся циклов в секунду.
Частота дискретизации звука
Частота дискретизации звука — это количество измерений уровня сигнала за 1 секунду. Герц (Гц) или Hertz (Hz) — это научная единица измерения, определяющая количество повторений какого-то события в секунду. Эту единицу мы будем использовать!
Частота дискретизации звука
Наверное, вы очень часто видели такую аббревиатуру — Гц или Hz. Например, в плагинах эквалайзеров. В них единицами измерения являются герцы и килогерцы (то есть 1000 Гц).
Давайте я открою плагин эквалайзера и покажу вам как это выглядит. Вам, наверное, знакомы эти цифры.
С помощью эквалайзера вы можете ослаблять или усиливать определенные частоты в пределах слышимого человеком диапазона.
Здесь у меня запись звуковой волны, которая была сгенерирована на частоте 1000 Гц (или 1 кГц). Если увеличить масштаб и посмотреть на ее форму, то мы увидим, что она правильная и повторяющиеся (периодическая).
Повторяющиеся (периодическая) звуковая волна
В одной секунде здесь происходит тысяча повторяющихся циклов. Для сравнения, давайте посмотрим на звуковую волну, которую мы воспринимаем как шум.
Неупорядоченный звук
Тут нет какой-то конкретной повторяющейся частоты. Также нет определенного тона или высоты. Звуковая волна не упорядочена. Если мы взглянем на форму этой волны, то увидим, что в ней нет ничего повторяющегося или периодического.
Давайте перейдем в более насыщенную часть волны. Мы увеличиваем масштаб и видим, что она не постоянная.
Неупорядоченная волна при масштабировании
Из-за отсутствия цикличности мы не в состоянии услышать какую-то определенную частоту в этой волне. Поэтому мы воспринимаем ее как шум.
Смертельный уровень звука
Стоит сразу сказать, что по нормативным нормам, безопасным уровнем громкости шума считается не более 55 дБ (децибел) днем и 40 дБ ночью. Даже при длительном воздействии на слух, этот уровень не нанесет вреда.
Уровни громкости звука | ||
---|---|---|
(дБ) | Определение | Источник |
0 | Совсем не лышно | |
5 | Почти не слышно | |
10 | Почти не слышно | Тихий шелест листьев |
15 | Еле слышно | Шелест листвы |
20 — 25 | Едва слышно | Шепот человека на расстоянии 1 метр |
30 | Тихо | Тиканье настенных часов (допустимый максимум по нормам для жилых помещений ночью с 23 до 7 часов) |
35 | Довольно слышно | Приглушенный разговор |
40 | Довольно слышно | Обычная речь (норма для жилых помещений днем с 7 до 23 часов) |
45 | Довольно слышно | Разговор |
50 | Отчетливо слышно | Пишущая машинка |
55 | Отчетливо слышно | Разговор (европейская норма для офисных помещений класса А) |
60 | Шумно | (норма для контор) |
65 | Шумно | Громкий разговор (1м) |
70 | Шумно | Громкие разговоры (1м) |
75 | Шумно | Крик и смех (1м) |
80 | Очень шумно | Крик, мотоцикл с глушителем |
85 | Очень шумно | Громкий крик, мотоцикл с глушителем |
90 | Очень шумно | Громкие крики, грузовой железнодорожный вагон (7м) |
95 | Очень шумно | Вагон метро (в 7 метрах снаружи или внутри вагона) |
100 | Крайне шумно | Оркестр, гром (по европейским нормам, это максимально допустимое звуковое давление для наушников) |
105 | Крайне шумно | В старых самолетах |
110 | Крайне шумно | Вертолет |
115 | Крайне шумно | Пескоструйный аппарат (1м) |
120-125 | Почти невыносимо | Отбойный молоток |
130 | Болевой порог | Самолет на старте |
135 — 140 | Контузия | Взлетающий реактивный самолет |
145 | Контузия | Старт ракеты |
150 — 155 | Контузия, травмы | |
160 | Шок, травма | Ударная волна от сверхзвукового самолета |
165+ | Разрыв барабанных перепонок и легких | |
180+ | Смерть |
Скорость звука в км в час и метры в секунду
Скорость звука — это скорость распространения волн в среде. Ниже даю таблицу скоростей распространения в различных средах.
0 ºС | м/с | км/ч |
---|---|---|
Воздух | 331 | 1191.6 |
Водород | 1284 | 4622.4 |
Азот | 334 | 1202.4 |
Аммиак | 415 | 1494.0 |
Ацетилен | 327 | 1177.2 |
Гелий | 965 | 3474.0 |
Железо | 5950 | 21420.0 |
Золото | 3240 | 11664.0 |
Кислород | 316 | 1137.6 |
Литий | 6000 | 21600.0 |
Метан | 430 | 1548.0 |
Угарный газ | 338 | 1216.8 |
Неон | 435 | 1566.0 |
Ртуть | 1383 | 4978.0 |
Стекло | 4800 | 17280.0 |
Углекислый газ | 259 | 932.4 |
Хлор | 206 | 741.6 |
Скорость звука в воздухе намного меньше чем в твердых средах. А скорость звука в воде намного выше, чем в воздухе. Составляет она 1430 м/с. В итоге, распространение идет быстрее и слышимость намного дальше.
Мощность звука
Мощность звука — это энергия, которая передается звуковой волной через рассматриваемую поверхность за единицу времени. Измеряется в (Вт). Бывает мгновенное значение и среднее (за период времени).
Давайте продолжим работать с определениями из раздела теория музыки!
Высота и нота
Высота — это музыкальный термин, который обозначает почти тоже самое, что и частота. Исключение составляет то, что она не имеет единицы измерения. Вместо того чтобы определять звук количеством циклов в секунду в диапазоне 20 — 20 000 Гц, мы обозначаем определенные значения частот латинскими буквами.
Музыкальные инструменты производят периодические звуковые волны правильной формы, которые мы называем тонами или нотами.
Давайте посмотрим на звуковую волну в 1 кГц. Сейчас я увеличу масштаб, и вы увидите каково расстояние между циклами.
Звуковая волна в 1 кГц
Теперь давайте взглянем на волну в 500 Гц. Тут частота в 2 раза меньше и расстояние между циклами больше.
Звуковая волна в 500 Гц
Теперь возьмем волну в 80 Гц. Тут будет еще шире и высота намного ниже.
Звук в 80 Гц
Мы видим взаимосвязь между высотой звука и формой его волны.
Давайте я покажу вам еще один пример!
Ниже волна в 440 Гц. Это стандарт в мире музыке для настройки инструментов. Соответствует он ноте ля.
Чистая звуковая волна в 440 Гц
Мы слышим только основной тон (чистую звуковую волну). Если увеличить масштаб, то увидим, что она периодическая.
А теперь давайте посмотрим на волну той же частоты, но сыгранную на пианино.
Периодический звук пианино
Посмотрите, она тоже периодическая. Но в ней есть небольшие дополнения и нюансы. Все они в совокупности и дают нам понятие о том, как звучит пианино. Но помимо этого, обертона обуславливают и тот факт, что одни ноты будут иметь большее сродство к данной ноте чем другие.
Для примера можно сыграть туже ноту, но на октаву выше. По звучанию будет совсем иначе. Однако она будет родственной предыдущей ноте. То есть это та же нота, только сыгранная на октаву выше.
Такая родственная связь двух нот в разных октавах обусловлена наличием обертонов. Они постоянно присутствуют и определяют насколько близко или отдаленно определенные ноты связаны друг с другом.
[bctt tweet=»Традиционной нотации высота ноты обуславливает ее расположение на нотном стане или нотоносце.» username=»Muzrock_com»]
Сейчас я покажу вам с помощью нотного редактора. Здесь мы видим, как записывается нота ля.
Помимо традиционного представления нот на нотном стане, в современных музыкальных редакторах вы можете встретить другую систему записи и редактирования нот. Чаще всего она представляет собой пианинную сетку или таблицу.
Слева мы видим клавиатуру пианино. А справа, соответствующие каждой ноте, прямоугольники.
В принципе, такая система не отличается от классической выше. Просто способ представления высоты нот реализован по-другому. Точно также, когда мы говорим 440 Гц или ля, мы имеем одну и ту же высоту или частоту звука.
Свойства и качество звука
Свойства звука — это его физические особенности, которые можно измерить. Сюда входит частота колебаний, их продолжительность и амплитуда. Еще относится и состав колебаний. То есть сочетание простейших колебаний в сложное.
А вот отражение физических свойств в наших ощущениях (то, что мы чувствуем) называется качеством звука. Сюда относится высота и длительность звука. А также громкость и тембр.
Высота звука зависит от частоты колебаний. Чем чаще колебания, тем выше звук. Чем реже колебания, тем ниже звук.
Длительность зависит от продолжительности колебаний.
Громкость зависит от амплитуды колебаний. Например, после удара по гитарной струне, можно увидеть, что она начнет колебаться в разные стороны. Чем шире эти колебания, тем громче звук. Ширина этого размаха называется амплитудой колебаний.
Если сильно ударим по струне, то амплитуда будет большой. Соответственно, мы услышим громкий звук. Если легонько тронем пальцем струну, то амплитуда будет маленькой. В таком случае, звук будет тихим.
Тембр — это обертоновая окраска звука. Она позволяет нам различать звуки одной высоты, но исполненные разными инструментами или голосами.
Кодирование звука
Кодирование звука — это процесс преобразования колебаний воздуха в колебания электрического тока с последующей дискретизацией аналогового сигнала. То есть такое кодирование необходимо нам для дальнейшей работы со звуком уже на компьютере.
А поскольку мы на ПК не можем работать с аналоговым сигналом, в таком случае мы должны преобразовать его в цифровой. Так мы можем к примеру, с помощью специальных компьютерных программ для создания звука работать с самим сигналом.
Для преобразования сигнала используются специальные аналого-цифровые преобразователи (АЦП). В компьютере это обычно звуковые карты.
Форматы звука
Форматы звука предназначены для представления аудио данных с последующим хранением на электронных носителях. Есть три основные группы:
Теперь вы знаете, что такое звук и каковы его характеристики. Также мы дополнительно рассмотрели такие понятия, как частота, высота и нота. А также как они соотносятся друг с другом.