Что образует внутренняя мембрана пластид

Научная электронная библиотека

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластидучастие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластидтранспортировка питательных веществ и утилизация продуктов обмена клетки;

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластидбуферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластидподдержание тургора (упругость) клетки;

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластидвсе биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Источник

Пластиды: общая характеристика, строение, виды и функции

Содержание:

Пластиды — специализированные органоиды, встречающиеся в живых эукариотических клетках растений. Для животных и грибов не характерны.

Виды пластидов

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

Совокупность пластид в клетке называют пластидомом, хотя в зрелой клетке содержатся пластиды только одного вида. В зависимости от окраски выделяют следующие пластиды:

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

Происхождение и трансформация пластид

Пластиды происходят одинаково – из пропластид. Эволюционными предками ученые считают бактерии, которые были поглощены другой бактерией эндоцитозом. Первая бактерия, скорее всего, могла преобразовывать энергию света.

Могут превращаться друг в друга по ситуации. В условиях слабой освещенности хлоропласты могут преобразовываться в лейкопласты. Хромопласты же могут образовываться из зеленых и бесцветных пластид в случае накопления каротиноидов.

Строение хлоропласта

Размер и число хлоропластов зависит от вида растения и клетки, где они расположены. На величину и очертания влияют условия среды и таксономичекая принадлежность растений. Например, у высших растений хлоропласты линзовидные. Крупные и богатые хлорофиллом, магнийсодержащим пигментом, органоиды у растений теневой зоны. У водорослей хлорофилл назван хроматофором и может принимать следующие формы: шаровидная, спиральная, чашевидная и другие.

Положение органоидов в клетке может меняться, так как они не закреплены, однако, чаще всего хлоропласты расположены близ клеточной стенки. Это нужно для того, чтобы улавливать свет.

Хлоропласты имеют двумембранную оболочку, которая отграничивает содержимое органоида от цитоплазмы. Мембраны не несут другие органоиды. У высших растений сильно развита внутренняя мембранная поверхность, которая образует плоские мешки – тилакоиды или более вытянутые – ламеллы. Несколько плотно собранных в стопки тилакоидов образуют граны. Важно: все тилакоиды расположены параллельно друг другу. На их стенках расположены молекулы хлорофилла. Граны связаны между собой тилакоидами стромы.

Строма – жидкая часть пластидов, где располагаются все части органоида.

Строение хромопласта

Встречаются в клетках лепестков, плодов, корнеплодах. Хромопласты разнообразны по форме и меньше хлоропластов. Система выростов внутренней мембраны не развита. Внутри пластида содержится пигменты желтого, оранжевого и красного цвета.

Строение лейкопласта

Лейкопласты – бесцветные пластиды. Встречаются в частях растениях, спрятанных от света, например в корнях, клубнях, семенах. Эти пластиды имеют шаровидную, чашевидную форму, но она может свободно меняться. Система выростов внутренней мембраны развита слабо. Тилакоиды одиночные, располагаются без особой ориентации в пространстве. Во всем остальной лейкопласты схожи с хлоропластами.

Выделяется несколько видов лейкопластов по запасаемым веществам

Функции пластидов

Пластиды

Функции

Фотосинтез – образование органических веществ из неорганических с использованием энергии света

Связаны с синтезом и накоплением запасных веществ

Окрашивают различные части растений, что важно для привлечения насекомых-опылителей

Пластиды поддерживают жизнедеятельность автотрофных клеток растений. Три вида органоидоидов отвечают за свои процессы, четко «делят обязанности», а в случае неблагоприятных условий трансформируются в необходимый для выживания органоид.

Источник

§ 13-1. Двумембранные органоиды

Сайт:Профильное обучение
Курс:Биология. 11 класс
Книга:§ 13-1. Двумембранные органоиды
Напечатано::Гость
Дата:Вторник, 14 Декабрь 2021, 09:37

Оглавление

Двумембранными органоидами клеток являются митохондрии и пластиды.

Митохондрии — органоиды, в которых протекает кислородный этап клеточного дыхания (этот процесс будет подробно рассмотрен в следующей главе). В ходе кислородного этапа с участием О2 происходит расщепление и окисление органических соединений до неорганических веществ. При этом выделяется много энергии, которая используется для синтеза большого количества АТФ. Поэтому митохондрии иногда называют «энергетическими станциями» клетки.

Митохондрии являются динамичными органоидами. Они способны изменять свою форму, сливаться друг с другом, делиться, перемещаться в участки клетки с повышенным потреблением энергии. Митохондрии скапливаются преимущественно в тех частях клетки, где выше потребность в АТФ, например вблизи органоидов движения или миофибрилл.*

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластидКаждая митохондрия ограничена двумя мембранами — наружной и внутренней, между которыми находится межмембранное пространство (рис. 13-1.1). Наружная мембрана митохондрии гладкая, не образует впячиваний и складок. Она отделяет органоид от гиалоплазмы и обладает высокой проницаемостью для ионов и небольших молекул. Внутренняя мембрана характеризуется гораздо меньшей проницаемостью. Она образует многочисленные складки — кристы, которые значительно увеличивают площадь ее поверхности. Внутренняя мембрана митохондрий содержит большое количество белков. В ее состав входят, например, ферменты, обеспечивающие синтез АТФ.

Содержимое митохондрии, ограниченное внутренней мембраной, называется матриксом. В матриксе содержатся различные неорганические и органические вещества, в том числе разнообразные ферменты, а также кольцевые молекулы ДНК и все виды РНК. Следовательно, митохондрии содержат собственную генетическую информацию. В их матриксе также находятся рибосомы, в которых осуществляется реализация этой информации, т. е. синтез белков. Митохондриальные *70S* рибосомы меньше по размерам, чем рибосомы, содержащиеся в гиалоплазме клетки. *ДНК митохондрии кодирует лишь небольшую часть белков, необходимых для функционирования этого органоида. Большинство митохондриальных белков кодируется ДНК, расположенной в ядре клетки. Такие белки синтезируются в 80S рибосомах в гиалоплазме, а затем транспортируются в митохондрию.*

Главная функция митохондрий — обеспечение клетки энергией в виде АТФ. *В клетке происходит постоянное обновление митохондрий. Новые митохондрии образуются в результате деления материнских. Этот процесс, как правило, протекает независимо от деления клетки и определяется ее энергетическими потребностями. Когда потребности клетки в энергии высоки, митохондрии интенсивно растут и размножаются путем деления. Если потребление энергии низкое, часть митохондрий может разрушаться или переходить в неактивное состояние.*

*Все типы пластид растений имеют общее происхождение. Они развиваются из первичных пластид (пропластид) клеток образовательных тканей. Пропластиды имеют вид бесцветных пузырьков, ограниченных двумя мембранами. Их размер меньше, чем у зрелых (дифференцированных) пластид.* Пластиды разных типов способны к взаимопревращениям.

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид Хлоропласты — это пластиды, в которых происходит фотосинтез. У растений хлоропласты окрашены в зеленый цвет благодаря высокому содержанию зеленых пигментов хлорофиллов. Кроме хлорофиллов, хлоропласты содержат желтые, оранжевые или красные пигменты — каротиноиды. В фотосинтезирующих клетках растений обычно находится по нескольку десятков хлоропластов, имеющих форму двояковыпуклой линзы. *Число хлоропластов в клетке увеличивается за счет их деления. Особенно активно это происходит в период роста клетки.* У разных видов водорослей хлоропласты могут значительно различаться по форме, размерам, окраске и количеству в клетке.

При развитии хлоропластов их внутренняя мембрана образует впячивания, направленные в строму. Далее они отделяются от внутренней мембраны, преобразуясь в тилакоиды — плоские одномембранные мешочки. Дисковидные тилакоиды, расположенные друг над другом, формируют граны, напоминающие стопки монет (рис. 13-1.2). Отдельные граны соединяются между собой вытянутыми в длину тилакоидами, *которые называются ламеллами*. Мембраны тилакоидов содержат фотосинтетические пигменты, различные белки (в том числе ферменты, обеспечивающие синтез АТФ) и другие вещества.

Главной функцией хлоропластов, как вы уже знаете, является осуществление процесса фотосинтеза.

*Органы растений способны воспринимать силу тяжести и расти в определенном направлении по отношению к центру Земли. Так, если развивающийся проросток положить горизонтально, его корень изогнется вниз, а побег будет расти вверх (рис. 13-1.3). Считается, что главную роль в восприятии гравитации играют амилопласты, которые содержатся в специализированных клетках корня и побега — статоцитах. Амилопласты плотнее гиалоплазмы и перемещаются в этих клетках под действием силы тяжести. Изменение положения растения вызывает смещение амилопластов в клетках, в результате чего меняется направление роста органов. В корнях статоциты локализованы в корневом чехлике. После его удаления направление роста корня становится случайным, не зависящим от гравитации.*

*Эндосимбиотическая теория возникновения митохондрий и пластид. Согласно этой теории двумембранные органоиды являются потомками симбиотических бактерий, попавших в клетку-предшественника современных эукариот на ранних этапах эволюции живой природы. Доказательством этого является определенная автономность двумембранных органоидов. В отличие от других органелл, митохондрии и пластиды содержат собственный генетический материал — кольцевые молекулы ДНК, похожие на ДНК прокариот. Кроме того, они имеют свой аппарат синтеза белков и образуются только в результате деления материнских митохондрий (пластид). Если митохондрии или пластиды удалить из клетки, новые в ней уже не появляются. Анализ ДНК показал, что митохондрии, вероятнее всего, произошли от древних аэробных бактерий, а пластиды — от цианобактерий.

Считается, что в ходе эволюции митохондрии и пластиды передали бóльшую часть своей генетической информации в ядро клетки. Большинство белков, необходимых этим органоидам, синтезируется не в их собственных рибосомах, а в тех, которые располагаются в гиалоплазме клетки. Таким образом, митохондрии и пластиды, частично сохранив автономию, попали под контроль клеточного ядра.*

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

1. Распределите органоиды на три группы: одномембранные, двумембранные и немембранные.

2. Как устроены митохондрии? Какую основную функцию они выполняют?

3. Клетки летательных мышц насекомых содержат по нескольку тысяч митохондрий. С чем это связано?

4. Какие типы пластид выделяют у растений? Чем они различаются?

5. Охарактеризуйте строение и функции хлоропластов.

6*. Каково происхождение митохондрий и пластид? Чем обусловлена относительная автономность двумембранных органоидов в клетке?

7*. Биологические мембраны имеют общий план строения, но могут отличаться по составу и свойствам. Так, миелиновая оболочка аксона, образованная плазмалеммой клеток глии, содержит около 75 % липидов и только 25 % белков. В цитоплазматической мембране количество липидов и белков примерно равное, а во внутренней мембране хлоропластов и митохондрий содержание белков достигает 75 %. Как вы думаете, с чем это связано?

Что образует внутренняя мембрана пластид. Смотреть фото Что образует внутренняя мембрана пластид. Смотреть картинку Что образует внутренняя мембрана пластид. Картинка про Что образует внутренняя мембрана пластид. Фото Что образует внутренняя мембрана пластид

Изучение строения и разнообразия пластид

Хлоропласты хорошо видны под микроскопом, например в клетках листа элодеи.

Лейкопласты удобно рассматривать в клетках эпидермиса листа традесканции.

Для изучения хромопластов можно использовать мякоть зрелых плодов рябины, шиповника, томата, перца или корнеплоды моркови.

● Почему осенью листья меняют окраску?

● Хромопласты придают яркий цвет лепесткам цветков и созревшим плодам многих растений. Как вы думаете, для чего это необходимо?

● У растений разных видов хромопласты различаются по форме. Они могут быть игловидными, округлыми, ромбическими, серповидными и др. Как вы думаете, чем это объясняется?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *