Что означает градуировка термометра сопротивления 50 м
Термометры сопротивления: виды, типы конструкции, классы допуска
Термометрия относится к наиболее простым и эффективным методам измерений. Она основана на том, что физические свойства материала меняются в зависимости от температуры. В частности, измеряя сопротивление металла, сплава или полупроводникового элемента, можно определить его температуру с высокой степенью точности. Датчики такого типа называются термоэлектрическими или термосопротивлениями. Предлагаем рассмотреть различные виды этих устройств, их принцип работы, конструкции и особенности.
Виды термодатчиков
Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):
Обозначения:
Расшифровка аббревиатур
Чтобы не возникало вопросов, что такое ТСМ, приведем расшифровку этой и других аббревиатур:
Чем отличается термосопротивление от термопары?
Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.
Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.
Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.
Платиновые измерители температуры
Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.
Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.
Датчик термопреобразователь ТСП 5071 производства Элемер
Никелевые термометры сопротивления
Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).
Медные датчики (ТСМ)
Внешний вид термопреобразователя ТСМ 1088 1
Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.
Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.
Типовые конструкции платиновых термосопротивлений
Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.
Конструктивное исполнение «Strain free»
Обозначения:
Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.
На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.
Исполнение Hollow Annulus.
Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий. Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.
Пример исполнения «Hollow Annulus»
Обозначения:
ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.
Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.
Пленочное исполнение (Thin film).
Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.
Миниатюрный пленочный датчик
Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).
Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.
Стеклянная изоляция спирали.
В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.
Класс допуска
Согласно действующим нормам допускается определенное отклонение от линейной характеристики «температура-сопротивление». Ниже представлена таблица соответствия класса точности.
Таблица 1. Классы допуска.
Класс точности | Нормы допуска °C |t | | Диапазон измерения температуры | |||
Платиновые датчики | Медные | Никелевые | |||
Проволочные | Пленочные | ||||
AA | ±0,10+0,0017 | -50°C …250°C | -50°C …150°C | x | x |
A | ±0,15+0,002 | -100°C …450°C | -30°C …300°C | -50°C …120°C | x |
B | ±0,30+0,005 | -196°C …660°C | -50°C …500°C | -50°C …200°C | х |
С | ±0,60+0,01 | -196°C …660°C | -50°C …600°C | -180°C …200°C | -60°C …180°C |
Приведенная в таблице погрешность отвечает текущим нормам.
Схемы включения ТСМ/ТСП
Существует три варианта подключения:
В измерительных приборах ТС, как правило, включен по мостовой схеме.
Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздуха
Обратим внимание, что под rл.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик.
Обслуживание
Информация о ТО температурного датчика указана в паспорте прибора или инструкции эксплуатации, там же приводится типовые неисправности и способы их ремонта, рекомендуемая длина кабеля для подключения, а также друга полезная информация.
Термометры сопротивления не требуют специального ТО, в задачу обслуживающего персонала входит:
Такой осмотр должен проводиться с периодичностью один раз в месяц или чаще.
Помимо этого должна проводиться поверка приборов, с использованием эталонного датчика, например, ЭТС 100.
Платиновый эталонный ПТС (датчик ЭТС 100)
Для градуировки датчиков используются специальные таблицы, в качестве примера приведена одна из них для термосопротивления pt100. Саму методику калибровки мы приводить не будем, ее описание несложно найти в сети.
Что касается методики поверки эталонных платиновых датчиков, то она должна производиться на специальных реперных точках.
Измерение температуры. Датчики термосопротивления
Конструктивно датчики термосопротивления представляют собой катушку, намотанную очень тонкой (0,05 или 0,063) медной или платиновой проволокой. Катушка помещается внутрь завальцованной с одной стороны металлической гильзы с герметизирующей засыпкой или заливкой, имеющей электрическое сопротивление более 10 МОм. Выводы катушки соединены с клеммами, расположенными в головке датчика. Совокупность катушки, гильзы и клемм называется чувствительным элементом. Все остальное – корпусом или головкой датчика. По сути дела, датчик термосопротивления является переменным резистором, сопротивление которого меняется по определенному закону в зависимости от температуры среды. Закон изменения сопротивления зависит от градуировки датчика. С эксплуатационной точки зрения можно считать, что закон изменения сопротивления является линейной функцией.
Любая линейная функция, как известно, описывается двумя точками. В случае датчика термосопротивления первой точкой является точка R0 (сопротивление датчика при 0°С), второй точкой – W100 (коэффициент определяющий сопротивление датчика при 100°С).
Так сопротивление датчика градуировки 100П с W100=1,3910 при температуре чувствительного элемента равной 100°С составит:
R100=R0*W100=100(Ом)*1,3910=139,10(Ом)
Таким образом, для прикидочных расчетов, можно принять что на 1 Ом сопротивления датчиков градуировок 100П и Pt100 приходиться 2,5°С. Так при сопротивлении датчика 108 Ом измеряемая им температура равна 20°С. Измерение сопротивления датчика можно производить любым мультиметром, предварительно отсоединив от датчика соединительные провода, чтобы исключить влияние вторичного прибора. Для более точного определения температуры по сопротивлению датчика можно воспользоваться градуировочными таблицами. Для измерения температуры природного и технических газов наиболее часто применяются датчики 50М и 100М, а для измерения температуры воды и пара — 100П и 500П.
С 1 января 2008 года вступил в силу новый ГОСТ Р 8.625—2006 на датчики термосопротивления. Этот ГОСТ отменил понятие W100, заменив его на коэффициентом «альфа». Кроме того, ГОСТ Р 8.625—2006 установил однозначное соответствие между типом чувствительного элемента (М, П или Pt) и коэффициентом «альфа». Так для элемента 50М (100М и т.д) значение «альфа» равно 0,00428, что соответствует старому обозначению W100=1.428, для элемента Pt100 «альфа» равно 0,00385 (W100=1.385), для элемента 100П «альфа» равно 0,00391 (W100=1.391). Поэтому значение «альфа» и W100 в заводских паспортах и на шильдиках новых датчиков термосопротивления могут не указываться.
Подключение датчиков термосопротивления производиться по двух, трех или четырех проводной схеме. Двухпроводная схема подключения используется крайне редко, так как в этом случае сопротивление соединительных проводов вносит существенную погрешность в измерение. Наиболее часто используется трехпроводная схема подключения – именно по этой схеме датчики термосопротивления подключаются к контроллерам Siemens серии S300 как впрочем и к контроллерам других серий и других производителей. Четырехпроводная схема в основном используется при подключении датчиков термосопротивления к приборам технического и коммерческого учета потребления энергоресурсов, где важно максимально точное измерение температуры. Именно при четырехпроводной схеме осуществляется полная компенсация сопротивления соединительных проводов и наибольшая точность показаний. Датчики термосопротивления чаще всего имеют четыре клеммы для подключения соединительных проводов, широко распространены и датчики с тремя клеммами. Датчики с двумя клеммами встречаются редко и, как правило, они имеют соединительные провода фиксированной длины заводского изготовления, с помощью которых датчик присоединяется к вторичному прибору.
Погрешность измерения температуры ΔТ при применении двухпроводной линии связи датчика термосопротивления с вторичным прибором может быть рассчитана по следующей формуле.
Увеличение длины линии связи L приводит к возрастания погрешности, применение провода с большим сечение жилы S приводит к уменьшению погрешности. Удельное сопротивление меди ρ равно 0,0171 Ом*мм2/м. Через множитель 2 учитывается суммарное сопротивление обоих (двух) жил кабеля.
Коэффициент К зависит от градуировки применяемого датчика термосопротивления. Коэффициенты К, приведенные в таблице, были рассчитаны для W100=1,391 (платиновые датчики) и W100=1,428 (медные датчики).
Как видно из таблицы при двухпроводной линии связи с датчиком термосопротивления целесообразно применение провода с большим сечением жилы. Расчет выполнен для одножильных и многожильных проводов и кабелей 3 класса (по ГОСТ 22483-77). Реальная погрешность вносимая в результат измерения двухпроводной линией связи с длиной отличной от 10 метров будет отличаться от расчетной табличной величины.
В случае применения двухпроводной схемы подключения, предпочтительнее использовать датчики сопротивлением 100 или даже 500 Ом, так как сопротивление соединительных проводов в этом случае, вносит меньшую погрешность в результат измерения температуры, чем при применении 50-омного датчика. В некоторых случаях целесообразнее использовать встроенный в головку датчика нормирующий преобразователь.
При подключении датчика температуры к контроллеру Siemens S300 может возникнуть следующая ситуация. При ослаблении контакта от одного или нескольких выводов термометра сопротивления, например, в проходной клеммной коробке наблюдается рост показаний температуры. Причем возрастание показаний температуры происходит медленно и так же медленно потом уменьшается в зависимости от того, как изменяется сопротивление самого термометра. То есть все указывает на то, что происходит реальный нагрев датчика. Но при измерении сопротивления датчика цифровым мультиметром видно, что на самом деле датчик имеет температуру меньшую, чем показывает контроллер. Протяжка всех клеммных соединений устраняет данную проблему.
Гильза вкручивается в вваренную в трубопровод бобышку, а уже в нее вставляется датчик термосопротивления и фиксируется гайкой. Для лучшего теплообмена внутрь гильзы должно быть залито масло. У некоторых датчиков стакан является конструктивной единицей корпуса датчика, поэтому такой датчик вворачивается напрямую в бобышку. При выходе из строя датчика его чувствительный элемент вынимается из корпуса и заменяется новым. Корпус при этом остается на месте и герметичность трубопровода не нарушается. При измерении температуры агрессивных сред на поверхность защитной гильзы наносят полимерное защитное покрытие. Для измерения температуры свыше 300°С как правило используют термопары.
Дополнительную информацию вы можете найти в разделе «Вопрос-ответ».
Посмотреть другие статьи в том числе про измерение температуры.
Градуировка термометра сопротивления
1. Цель работы
1 Ознакомление с устройством термометров сопротивления.
2 Градуировка термометра сопротивления.
2. Общие сведения
В термометрах сопротивления (ТС) используется свойство металлов и полупроводниковых материалов изменять сопротивление в зависимости от температуры. Зная зависимость сопротивления от температуры, судят о температуре среды, в которую он погружен. Выходным параметром устройства является электрическая величина, которая может быть измерена с весьма высокой точностью (до 0.02 °С), передана на большие расстояния и непосредственно использована в системах автоматического контроля и регулирования.
|
В качестве материалов для изготовления чувствительных элементов ТС используются чистые металлы: платина, медь, никель, железо и полупроводники. Изменение электросопротивления данного материала при изменении температуры характеризуется температурным коэффициентом сопротивления(1/ °С):
Сопротивление полупроводников с увеличением температуры резко уменьшается, т.е. они имеют отрицательный температурный коэффициент сопротивления, практически на порядок больший чем у металлов. Полупроводниковые ТС в основном применяются для измерения низких температур (от 1.5 до 400 °К).
Материал чувствительного элемента ТС должен иметь высокое удельное сопротивление, что обеспечивает небольшие габариты термометра; значительный коэффициент α для получения высокой чувствительности устройства; хорошую воспроизводимость состава; стойкость к агрессивному воздействию окружающей среды при повышенных температурах; стабильность характеристик во времени; хорошие экономические показатели; линейность зависимости сопротивления от температуры.
|
|
Достоинством ТСПП являются небольшие габариты, малая инерционность, высокий коэффициент а. Однако они имеют и существенные недостатки:
1)нелинейный характер зависимости опротивления от температуры; 2) отсут
ствие воспроизводимости состава и градуировочной характеристики, что исключает взаимозаменяемость отдельных ТС данного типа. Это приводит к выпуску ТСПП с индивидуальной градуировкой. В промышленности данные приборы имеют ограниченное применение.
Рис2.1 Термометр сопротивления
Термометр сопротивления (рис.2.1) состоит из сердечника 1, выполненного из электроизоляционного материала. На сердечник намотана бифилярно платиновая проволока 2 диаметром 0.05 мм или медная диаметром 0.1 мм. Для предохранения от
механических повреждений чувствительный элемент ТС помещают в защитную арматуру 3.
Чувствительные элементы ТСПП выполнены в виде небольших цилиндриков, шайбочек, пластинок или бусинок.
На рис.2.2 показано устройство ТСПП типа КМТ-1 и ММТ-1.
Рис. 2.2 Полупроводниковые термометр сопротивления КМТ-1 и ММТ-1 1-чувствительный элемент,2-контактные колпачки,3-выводы
Нестабильность градуировочной характеристики, необходимость индивидуальной градуировки в значительной степени ограничивает область применения ТСПП.
Различают термометры сопротивления по градуировкам.
ТИП | ГРАДУИРОВКА | ДИАПАЗОН ИЗМЕРЕНИЯ |
Платиновый ТСП | 50П | от 200 до +650 0 С |
Платиновый ТСП | 100П | от 200 до +650 0 С |
Медный ТСМ | 50М | от 200 до +650 0 С |
Термометр сопротивления работает с электронными автоматическими мостами и логометрами.
Термометры сопротивления платиновые и медные ТСП(ТСМ)/1-1388
Для измерения температуры малогабаритных подшипников и твердых тел.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
по ТУ 4211-130-12150638-2006
Диапазон измерения температур, ºС – от минус 50 до плюс 120
Материал защитной арматуры:
— для исполнений по рисункам 1, 2, 5 – латунь Л63, Л96 и 12Х18Н10Т
— для исполнений по рисункам 3, 4 медь М1и 12Х18Н10Т
-для исполнения по рисунку 6 – слюдосодержащий материал
Защищенность от пыли и воды по ГОСТ 14254-96:
— для рис. 1, 2, 5,6 – IP00
При заказе и записи в технической документации необходимо указать:
— тип термометра: ТСП/1-1388, ТСМ/1-1388;
— НСХ преобразования по ГОСТ 6651-94, ГОСТ 8.625-2006:
— для ТСП/1-1388 – 50П, 100П;
— класс допуска: – для ТСП/1-1388 – В, С
— номер схемы соединений выводов: (см. табл.)
— материал защитной арматуры для исполнений по рисункам 1,2,5;
— длину монтажной части защитной арматуры L, мм, для исполнений по рисункам 3, 4 …(см.табл.)
— длину гибкого кабеля L1, мм: – для исполнений по рисункам 1, 2, 5, 6 ………………………… (см.табл.)
— обозначение технических условий.
ИсполнениятермометровТСП(ТСМ)/1-1388
Пример записи при заказе
ТСП/1-1388 – 1 50П В сх.4 L1=1000 мм – Л63 ТУ 4211-130-12150638-2006.
Термометры сопротивления платиновые ТСП 002-06
ДДЖ 2.821.002 ТУ
Номер Госреестра 41891-09
Термометры сопротивления платиновые ТСП 002-06 предназначены для измерения температуры подшипников турбогенераторов.
Нормируемый параметр | Значение |
Диапазон измеряемых температур, °C | -50. +120 |
Номинальная статическая характеристика преобразования | Pt50,Pt100 |
Отношение сопротивления при 100 °C к сопротивлению при 0 °C (W100) | 1,385 |
Класс допуска | В |
Предел допускаемого отклонения от НСХ, °C для класса В | ±[0.30+0.005(t)] |
Показатель тепловой инерции не более, с | |
Группа виброустойчивости по ГОСТ 12997 | N2 и F3 |
Измерительный ток не более, мА | 3,0 |
Вид климатического исполнения по ГОСТ 15150 | У3 |
Степень защищенности от внешних воздействий | IP00 |
Материал защитной гильзы | 12Х18Н10Т |
Межповерочный интервал |
Приборы для измерения температуры
Логометр. Электронный автоматический мост Электронный уравновешенный мост.
Логометр
Логометр является прибором магнитоэлектрической системы и служит для измерения температуры. Подвижная система логометра состоит из двух скрещенных и жёстко связанных между собой рамок A и B, свободно вращающихся на одной оси в подпятниках. Рамки помещены в зазоре между металлическим сердечником цилиндрической формы 2 и башмаками 3 постоянного магнита 1. Рамки изготовлены из большого числа витков тонкой медной изолированной проволоки, число витков в обоих рамках одинаково. Форма полюсных башмаков выполняется так, что зазоры увеличиваются от центра к краям по отношению к рамкам прибора. В связи с этим магнитное поле в которое помещены рамки не равномерно, т.к. его напряженность уменьшается от центра к краям полюсных башмаков. Питание прибора осуществляется от батареек гальванических элементов постоянного напряжения 4 вольта. Питание включено так, что вращающейся момент рамок направлен друг к другу. К рамкам ток подводится через спиральные пружинки 4, которые возвращают стрелку прибора в исходное положение при снятии напряжения. Так как ток разветвляется в точке C, он проходит в двух направлениях через постоянное сопротивление R1 и рамку A и в другом направлении через термометр сопротивления R1 и рамку B. В случае равенства сопротивления в обеих цепях, токи в рамках A и B будут одинаковы, тогда подвижная система займет одинаковое положение относительно линий N и S с максимальной магнитной индукцией в обоих зазорах. При повышении температуры термометр сопротивления нагреется, сопротивление R1 увеличится, что вызовет уменьшение силы тока в цепи рамки B и поворот подвижной системы по часовой стрелке. Так как сила тока в рамке A, а следовательно, создаваемый ею вращающийся момент, будет большим противодействующего ему вращающегося момента в рамке B, при повороте системы рамка A попадает в более слабое поле.
В результате, вращающийся момент рамки A уменьшается, а в рамке B увеличивается до тех пор пока эти моменты не сравняются. Следовательно каждому значению температуры термометра соответствует определенный угол поворота системы и закрепленной на её оси стрелки 5.