Что означает мтл в намагничивании

Как рассчитать силу магнита?

Сила магнита рассчитывается, в первую очередь, исходя из его массы. То есть, чем больше масса магнита, тем больше его сила, так называемая, сила на отрыв.

Обращаем внимание на то, что сила на отрыв измеряется в единицах килограмм-сила. Сила на отрыв не измеряется просто в килограммах.

Тангенциальная составляющая силы

Физические характеристики или класс магнита

Во-вторых, сила на отрыв рассчитывается исходя из физических характеристик магнита. Например, магнит класса N45 сложнее оторвать от поверхности, чем магнит таких же размеров класса N35. Это связано с магнитной энергией магнита: чем она выше (энергия), тем сложнее оторвать магнит от поверхности.
Рассмотрим пример на магните размером 30*10 мм. Сила на отрыв такого магнита классом N35 от стального листа составляет 17,87 кг/с (или просто килограмм). Сила на отрыв такого же магнита от стального листа, но уже классом N45, составляет 22,92 кг/с. То есть разница составляет 28%!

Система, в которую помещен магнит

В-третьих, попробуем рассмотреть силу на отрыв магнита, помещенного между двумя стальными листами (схематично, лист-магнит-лист). В этом случае, мы будем отрывать один из листов от магнита (второй лист надежно закреплен).
Рассмотрим тот же пример, магнит 30*10 мм. Чтобы оторвать лист от магнита классом N35, нам потребуется сила 30,55 кг/с. Для класса N45 эта величина составит и вовсе рекордные 39,28 кг/с. Делаем вывод: сила на отрыв рассчитывается исходя из системы характеристик, в которую помещен магнит.

Площадь соприкосновения

Если же Вам достаточно теоретических расчетов, то каждая карточка магнита имеет информацию о массе и силе на отрыв. Удачных покупок!

Что такое аксиальная намагниченность?

Что такое диаметральная намагниченность?

Что такое радиальная намагниченность?

Что значит «класс» магнита?

В первую очередь, неодимовые магниты делят на классы, которые обозначаются буквами и числами (например, N35), в которых и заложена основная информация о магните. Ознакомиться с таблицей физических характеристик неодимовых магнитов Вы можете здесь.

Основное классовое отличие магнитов – это их рабочая температура использования, то есть та допустимая максимальная температура, превышая которую магнит начинает терять свои магнитные свойства. Таким образом, на температурный диапазон использования магнита указывает буквенная часть его маркировки. Дадим расшифровку этих букв:

Стоит оговориться, что отрицательные температуры не оказывают влияния на магнитные свойства для большинства магнитов.

Цифры, указанные в обозначении класса магнитов: N30, 33M, 35H, 38SH, 40UH и т.д., указывают на Магнитную Энергию, измеряется в килоДжоуль на кубический метр. Этот критерий магнитов отвечает за их мощность или, так называемое, «усилие на отрыв», то есть сила, которую необходимо приложить к магниту, чтобы его «оторвать» от поверхности. Необходимо понимать, что поверхность (стальной лист) должен быть идеально ровным, а приложенная сила должна быть перпендикулярной к листу. Это, так называемые, идеальные или теоретические условия. Чем выше цифровое обозначение магнита, тем выше его усилие на отрыв.

Сила на отрыв магнита, и как ее рассчитать

Но, кроме того, «сила на отрыв» зависит не только от физических характеристик магнита, но и от его размера и веса. Например, магнит 25*20мм легче оторвать от стального листа, чем магнит 40*5 мм, так как площадь соприкосновения у второго магнита больше (25 мм против 40 мм). Но линии магнитного поля, если их визуализировать, распространяются у первого магнита (25*20 мм) «дальше», значит и «цепляется» за стальной лист он крепче.

На весь товар оплаченный с сайта в рублях с помощью банковских карт действует дополнительная скидка в 10%!

Скидка суммируется со всеми действующими скидками на товары. Также вы можете списывать бонусы за данные заказы по нашей программе лояльности.

Обращаем внимание, что скидка действует только на товар и не распространяется на доставку.

Уважаемые клиенты!

Начиная со второго заказа в нашем интернет-магазине, вы сможете оплатить бонусами весь заказ (или его часть)! Количество бонусов численно равно количеству рублей, которые вы можете использовать при оплате покупки.

Правила начисления бонусов для постоянных клиентов

Когда вы совершаете второй или третий заказ, наши бонусы начисляются вам следующим образом:

Сумма заказаКоличество бонусов
Менее 500 руб.25 бонусов
От 501 до 1000 руб.50 бонусов
От 1001 до 3000 руб.75 бонусов
От 3001 руб. и более100 бонусов

Начиная с четвертого заказа вам присваивается почетный статус, в соответствии с которым будут начислены бонусы за выполненные заказы:

Количество заказовКоличество начисленных бонусов
Четвертый заказ4% от суммы покупки
Пятый заказ5% от суммы покупки
Шестой заказ6% от суммы покупки
Седьмой заказ7% от суммы покупки
Восьмой заказ8% от суммы покупки
Девятый заказ9% от суммы покупки
Десятый заказ и последующие заказы10% от суммы покупки

Общие правила предоставления скидок

Желаем вам приятных покупок в нашем интернет-магазине! Спасибо, что вы с нами!

Характеристики неодимовых магнитов

Данную статью мы написали, чтобы дать ответ на вопрос о классах магнитов, их стандартах, физических характеристиках.

Несмотря на то, что предлагаемые нами магниты называются неодимовыми, они могут очень сильно отличаться друг от друга, ведь у каждого магнита есть свои физические характеристики, а не только размеры, форма и покрытие. Поэтому вопрос, какие именно неодимовые магниты Вас интересуют, не должен ставить Вас в тупик. В этой статье Вы получите ответы на многие свои вопросы.

Что обозначают буквы и цифры в классах неодимовых магнитов?

Зачастую, мы, как производители и продавцы, хотим услышать технические характеристики магнита, а именно буквы и цифры, в которых они (технические характеристики) зашифрованы. А покупатель зачастую досконально знает свою область применения магнитов, но номенклатуру, тем более международную, не знает.
Итак, начинаем разбираться с международной номенклатурой магнитов, а именно классами, техническими характеристиками и обозначениями.

В первую очередь, неодимовые магниты делят на классы, которые обозначаются буквами и числами (например, N35), в которых и заложена основная информация о магните. Ниже приведена стандартная номенклатурная таблица характеристик неодимовых магнитов (смотрите в левый столбик – там указаны классы).

В таблице все численные величины мы представили в двух единицах измерения. Первая, без скобочек, – это величина измерения в системе СИ (эта та система, в которой работает наша страна), а вторая (указана в скобках), – это измерения в международной системе СГСЕ (европейские стандарты). Для Вашего удобства мы решили указать в таблице обе единицы измерения.

Таблица характеристик неодимовых магнитов

Начинаем изучать таблицу справа налево. Как Вы можете увидеть по правому столбику таблицы, основное классовое отличие магнитов – это их рабочая температура использования, то есть та допустимая максимальная температура, превышая которую магнит начинает терять свои магнитные свойства. Таким образом, на температурный диапазон использования магнита указывает буквенная часть его маркировки (левый столбец). Дадим расшифровку этих букв:

Стоит оговориться, что отрицательные температуры не оказывают влияния на магнитные свойства для большинства магнитов.

Цифры, указанные в обозначении класса магнитов: N30, 33M, 35H, 38SH, 40UH и т.д., указывают на Магнитную Энергию (четвертый столбец таблицы), измеряется в килоДжоуль на кубический метр. Этот критерий магнитов отвечает за их мощность или, так называемое, «усилие на отрыв», то есть сила, которую необходимо приложить к магниту, чтобы его «оторвать» от поверхности. Необходимо понимать, что поверхность (стальной лист) должен быть идеально ровным, а приложенная сила должна быть перпендикулярной к листу. Это, так называемые, идеальные или теоретические условия. Совершенно понятно, что чем выше цифровое обозначение магнита, тем выше его усилие на отрыв.

Сила на отрыв магнита

Но, кроме того, «сила на отрыв» зависит не только от физических характеристик магнита, но и от его размера и веса. Например, магнит 25*20 мм легче оторвать от стального листа, чем магнит 40*5 мм, так как площадь соприкосновения у второго магнита больше (25 мм против 40мм). Но линии магнитного поля, если их визуализировать, распространяются у первого магнита (25*20 мм) «дальше», значит, и «цепляется» за стальной лист он лучше.

Остаточная магнитная индукция, миллиТесла (КилоГаусс)

Коэрцитивная сила, КилоАмпер/метр (КилоЭрстед)

Магнитная энергия, килоДжоуль/м3 (МегаГаусс-Эрстед)

Источник

Способ измерения и контроля намагниченности рельсов

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Владельцы патента RU 2519473:

Изобретение относится к измерительной технике, а именно к измерению и контролю характеристик магнитных полей, и может быть использовано, в частности, на железнодорожном транспорте для регистрации и контроля магнитной индукции в рельсах. При осуществлении способа контроля намагниченности рельсов определяют значение магнитной индукции, сравнивают величину магнитной индукции рельсов с предельно допустимыми значениями магнитной индукции для обеспечения работы автоматической локомотивной сигнализации без сбоев, которые определяют при автономной тяге поездов, тяге переменного и постоянного токов. При превышении данного значения производят операцию размагничивания рельсов. Для новых рельсов, укладываемых в путь при первичной укладке до размагничивания, а также для рельсов, эксплуатирующихся в пути в независимости от пропущенного тоннажа, но не подвергавшихся после укладки в путь размагничиванию, величина предельно допустимого значения магнитной индукции составляет не более 1,0 мТл, а для участков пути с рельсами внутри колеи или по концам шпал величина предельно допустимого значения магнитной индукции составляет не более 7,0 мТл. Технический результат заключается в повышении точности измерения как для новых рельсов,так и для рельсов, эксплуатирующихся в пути. 2 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, а именно к измерению и контролю характеристик магнитных полей, и может быть использовано, в частности, на железнодорожном транспорте для регистрации и контроля магнитной индукции в рельсах.

Недостаток известного решения связан с тем, что измерение магнитной индукции рельсов проводится в статике, без учета автономной тяги поездов, тяги переменного и постоянного токов, которые также влияют на величину намагниченности рельсов, и, как следствие, не позволяет получить точные результаты измерения и последующего контроля.

Техническим результатом, на достижение которого направлено заявляемое решение, является повышение точности и качества контроля намагниченности как для новых рельсов, укладываемых в путь при первичной укладке до размагничивания, а также для рельсов, эксплуатирующихся в пути в независимости от пропущенного тоннажа, но не подвергавшихся после укладки в путь процедуре размагничивания.

Указанный технический результат достигается тем, что в способе контроля намагниченности рельсов измеряют величину магнитного поля рельсов, определяют значение магнитной индукции, сравнивают величину магнитной индукции рельсов с предельно допустимыми значениями магнитной индукции для обеспечения работы автоматической локомотивной сигнализации без сбоев, которые определяют при автономной тяге поездов, тяге переменного и постоянного токов, и при превышении данного значения производят операцию размагничивания рельсов.

Способ, характеризующийся тем, что для новых рельсов, укладываемых в путь при первичной укладке до размагничивания, а также для рельсов, эксплуатирующихся в пути в независимости от пропущенного тоннажа, но не подвергавшихся после укладки в путь размагничиванию, величина предельно допустимого значения магнитной индукции составляет не более 1,0 мТл.

Способ, характеризующийся тем, что для участков пути с рельсами внутри колеи или по концам шпал величина предельно допустимого значения магнитной индукции составляет не более 7,0 мТл.

Работы по измерению магнитной индукции элементов верхнего строения пути в обязательном порядке проводятся после укладки новых рельсов в путь, при одиночной замене или его капитальном ремонте в срок до открытия движения по участку пути с новыми рельсами. Кроме того, показанием к проведению внеплановых измерений магнитной индукции элементов верхнего строения пути, дополнительных к регламентным, может являться наличие учтенных сбоев в работе систем АЛСН локомотивов на подконтрольных участках.

Намагниченность рельсов возникает: за счет механической нагрузки на рельсы во время движения поезда, за счет протекания по рельсам токов при транспортировке рельсов на заводах при помощи электромагнитных захватов и т.д. Поэтому регистрация и контроль магнитных полей в железнодорожных рельсах, свидетельствующих об их намагниченности, является важной технической проблемой.

Еще одним фактором, оказывающим заметное влияние на сбои в работе систем АЛСН от намагниченности рельсов, является частота расположения «магнитных пятен» на поверхности рельсов. Так при сплошной укладке новых рельсов без предварительной магнитной обработки «магнитные пятна» в местах захвата рельсов магнитными кранами расположены по три на каждом рельсе длиной 25 м с одинаковым расстоянием между ними

6,25 м. При значении амплитуды вертикальной составляющей магнитной индукции Bz=1,3 мТл в таких «магнитных пятнах» происходят сбои в работе АЛСН. Проведенный авторами анализ влияния множественных «магнитных пятен» на поверхности новых рельсов на осциллограмму сигнала помех Uпк в приемных катушках локомотива показывает, что при расстоянии между «магнитными пятнами»

6,25 м на рельсе длиной 25 м при скорости движения 70 км/ч (19,4 м/с) время между прохождением двух, последовательно расположенных, «магнитных пятен», а соответственно между временными точками начала возбуждения импульсного сигнала помехи на осциллограмме, составит 6,25/19,4=0,32 с. Очевидно, что помехи длительностью более 0,32 с будут накладываться друг на друга и на кодовый сигнал, вызывая его соответствующие искажения, что проиллюстрировано на фиг.1, где показано наложение кодового сигнала на помеху.

При движении со скоростью 70 км/ч (19,4 м/с) за время, соответствующее трем кодовым посылкам 1,6×3=4,8 с локомотив с приемными катушками проедет участок пути длиной 93 м, что соответствует четырем последовательно уложенным звеньям по 25 м или соответствующей сварной плети.

При укладке трех последовательных звеньев по 25 м, что составляет 75 м, время их прохождения со скоростью 70 км/ч (19,4 м/с) составит 3,84 с, в течение которого импульсные сигналы помех в ПК, возбуждаемые магнитными пятнами с интервалом 0,32 с, также будут воздействовать на три кодовых посылки 1,6×3=4,8 с, что приведет к сбоям АЛСН.

Только лишь проезд по двум звеньям с новыми рельсами с «магнитными пятнами» длиной 50 м со скоростью 70 км/час даже при поступлении импульсов помех в приемные катушки локомотива может не вызвать сбоев, так как время прохождения такого участка составит 2,6 с, что не превышает временного отрезка двух кодовых посылок.

Влияние намагниченности элементов верхнего строения пути, в частности, рельсов на работу локомотивной сигнализации с частотой 175 Гц (АЛС-ЕН) можно не учитывать, так как для получения опасных для сбоев помех скорость движения поезда должна быть более 300 км/ч.

Авторами проведены теоретические и экспериментальные исследования, причем полученные расчетные значения были сопоставлены с экспериментальными, проанализированы и на основе проведенного анализа были определены следующие унифицированные предельно допустимые значения магнитной индукции для работы АЛСН без сбоев:

Измеритель напряженности магнитного поля «Стык-3D», позволяет измерять в реальном масштабе времени три компоненты напряженности магнитного поля в изолирующем стыке рельса, вычислять модуль поля в А/м.

Приборы «А9-1М», «СТЫК-3Д» и «ИТРЦ-М» позволяют осуществлять контроль индукции и напряженности магнитного поля только в локальных участках элементов верхнего строения пути, так как не имеют возможности непрерывного измерения и регистрации характеристик магнитного поля при движении по контролируемым элементам верхнего строения пути. В соответствии с этим контроль характеристик магнитного поля целесообразно осуществлять только в местах верхнего строения пути (рельсов, изолирующих стыков, элементов стрелочных переводов), где чаще всего происходят учтенные сбои в работе АЛСН.

1. Способ контроля намагниченности рельсов заключающийся в том, что измеряют величину магнитного поля рельсов, определяют значение магнитной индукции, сравнивают величину магнитной индукции рельсов с предельно допустимыми значениями магнитной индукции для обеспечения работы автоматической локомотивной сигнализации без сбоев, которые определяют при автономной тяге поездов, тяге переменного и постоянного токов и при превышении данного значения производят операцию размагничивания рельсов.

2. Способ по п.1, отличающийся тем, что для новых рельсов, укладываемых в путь при первичной укладке до размагничивания, а также для рельсов, эксплуатирующихся в пути в независимости от пропущенного тоннажа, но не подвергавшихся после укладки в путь размагничиванию, величина предельно допустимого значения магнитной индукции составляет не более 1,0 мТл.

3. Способ по п.1, отличающийся тем, что для участков пути с рельсами внутри колеи или по концам шпал величина предельно допустимого значения магнитной индукции составляет не более 7,0 мТл.

Источник

Что означает мтл в намагничивании

Валик для многополюсного одностороннего намагничивания листовых
магнитопластов толщиной до 3 мм с ферритовым наполнителем

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рис. 1. Намагничивающий валик с зоной намагничивания шириной 50 мм и расстоянием между полюсами 6 мм.

Технические характеристики намагничивающего валика с зоной намагничивания шириной 50 мм и расстоянием между полюсами 6 мм:

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рис. 2. Намагничивающий валик с зоной намагничивания шириной 65 мм и расстоянием между полюсами 4 мм.

Технические характеристики намагничивающего валика с зоной намагничивания шириной 65 мм и расстоянием между полюсами 4 мм:

Способ применения

Листовой магнитопласт расстилается на стальной подложке и при необходимости покрывается тонким слоем немагнитного защитного материала. Если толщина намагничиваемого материала превышает 5 мм, то можно попробовать произвести намагничивание без использования стальной подложки. Валик прокатывается по листу в заданном направлении (вдоль, поперек, по диагонали, зигзагом). Число проходов определяется соотношением размеров листа и ширины зоны намагничивания валика. Если прокатка осуществляется вручную, участки проходов желательно предварительно разметить (если применяется защитный материал, постоянную разметку можно сделать на нем). Некоторая погрешность в расположении магнитных полюсов на площади листа, как правило, не оказывает существенного влияния на его аттрактивные свойства. При намагничивании магнитопластов (магнитоэластов) с наполнителем из редкоземельных магнитных порошков для повышения остаточной индукции можно применить предварительный подогрев образца до температуры примерно 100 0 C, но не доводя образец до размягчения. Контроль магнитной индукции на поверхности намагниченного образца можно проводить с помощью тесламетра [7]. Получить визуальное изображение магнитных полюсов удается с помощью магнитного порошка или железных опилок [3].

Пример применения

При намагничивании вручную с помощью валика опытного экземпляра полимерного постоянного магнита для магнитного стикера (фридж-магнита) (рис. 3) были получены магнитные полюса (рис. 4), величина магнитной индукции на поверхности которых достигала +25 и более мТл (рис. 5).

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рис. 4. Изображение магнитных полюсов на поверхности магнитного стикера, полученное с помощью железных опилок.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рис. 5. Зависимость величины магнитной индукции на поверхности магнитного стикера от расстояния от края стикера.

Выводы и перспективы

На основе данной разработки спроектированы и изготовлены для практического применения намагничивающие валки [1, 2], позволяющие проводить многополюсное намагничивание в непрерывном режиме листовых магнитопластов (магнитной резины, магнитного винила) шириной до 1050 мм и любой длины (на выходе из экструдера или перемоткой из рулона в рулон).

Ссылки:

16.03.2007
17.03.2007
26.06.2007
23.06.2009
23.07.2011
24.07.2011

Источник

Устранение влияния магнитных полей в электросчетчиках с импульсными трансформаторами

Введение

Предыстория

Семейство микросхем счетчиков электроэнергии 71M6541/71M6542/71M6543 разработано для применения совместно с токовыми трансформаторами, традиционно используемыми в одно- и многофазных счетчиках, или с шунтирующими резисторами, подключаемыми к изолирующим интерфейсам удаленных сенсоров. Посредством малогабаритных недорогих импульсных трансформаторов 71M6541/71M6542/71M6543 и 71М6545 через интерфейс связи с удаленными сенсорами подключаются к 71M6601, 71M6103 или 71M6113.

Под воздействием очень сильных постоянных магнитных полей сердечники в токовых трансформаторах (обычно используемых в многофазных счетчиках электроэнергии) входят в насыщение, и выходные сигналы трансформаторов оказываются ниже уровня, пропорционального протекающему в сети току, что, соответственно, приводит к потерям при учете коммунальных услуг. Подобное насыщение происходит при высоких значениях тока, и его сложно обнаружить.

Подобно своим аналогам, токовым трансформаторам, импульсные трансформаторы также могут быть подвержены влиянию внешних магнитных полей. В худшем случае насыщение ведет к потере магнитной проницаемости и переходу в состояние низкоомной нагрузки для драйверов электроизмерительных устройств. Это приводит к короткому замыканию дифференциальных драйверов и последующей перегрузке источника питания.

Соответственно, измерительные системы на основе микросхем счетчиков электроэнергии 71M6541/71M6542/71M6543 и изолированных АЦП 71M6601, 71M6103 или 71M6113, соединенных с шунтирующими резисторами, не имеют полного иммунитета к магнитным полям.

Следует отметить, что для защиты от магнитных полей не существует единого рецепта на все случаи жизни. Каждая конкретная ситуация уникальна в зависимости от того, действуют ли переменные или постоянные поля, погружен ли счетчик в магнитное поле или на него воздействует внешний магнит, обеспечивает ли конструктив пространство для перемещения трансформаторов от источников полей.

После краткого обзора требований в части воздействия магнитных полей к счетчикам электроэнергии в статье даны основные определения магнетизма. Также представлены методы снижения влияния: от простейших и наименее затратных способов до применения методик экранирования и трансформаторов на основе передовых магнитных материалов.

Требования по воздействиям магнитных полей на счетчики электроэнергии

Традиционно, как в стандарте ANSI, так и в EN/IEC, сказано, что счетчики электроэнергии функционируют при относительно небольших уровнях магнитных полей:

Эти требования не новы и являются результатом следующих соображений:

Условия испытаний варьируются от стандарта к стандарту, но могут быть разделены на две категории:

В зависимости от метода испытаний можно сделать выводы относительно того, как следует защищать счетчик от магнитных полей. Когда используется метод приближения, геометрическое место расположения чувствительных компонентов имеет большое значение. Напротив, при методе погружения геометрическое место расположения чувствительных компонентов не имеет большого значения, так как поле при испытаниях будет воздействовать на все части счетчика.

Национальные стандарты разных стран могут содержать некоторые специфические требования помимо тех, что прописаны в стандартах IEC и EN.

Новые требования к постоянным магнитным полям

Таблица 1. Изменение величины тока при воздействии постоянного магнитного поля на токовый трансформатор

Ток, АПоказания без воздействия
магнитного поля, А
Показания с воздействием
магнитного поля, А
Погрешность, %
200199,780–60
10099,825–75
5049,949,8–0,2
109,999,990

По этой причине токовые трансформаторы, разработанные для применения в сильных магнитных полях, часто имеют экран от магнитных полей (увеличивающий их цену) или заменяются на устойчивые к магнитному полю трансформаторы DC-tolerant CTs, что также увеличивает расходы и отрицательно влияет на точность измерения фазовых соотношений при изменяющихся значениях тока и температуры.

Некоторые основы магнетизма

В электротехнике мы используем термин — напряжения, которые вызывают протекание тока через резисторы в замкнутой цепи. Можно провести аналогию при изучении магнитных полей. Здесь магнит (или катушка с протекающим в ней электрическим током) выступает в качестве источника напряжения. Воздух или магнитные материалы играют роль дискретных резисторов, а магнитный поток является эквивалентом электрического тока. Линии магнитного поля, создаваемые на одном полюсе магнита, проникая через воздух или магнитный материал, возвращаются к противоположному полюсу магнита.

В таблице 2 приведены некоторые свойства магнитного поля и величины их измерения.

Таблица 2. Магнитные и электрические характеристики и единицы измерения

ХарактеристикаСимволРазмерностьОписание
Постоянный магнитИсточник постоянного магнитного поля
Напряженность поляНА/мВеличина поля, создаваемого магнитом или током
Относительная магнитная
проницаемость
μrПроводимость для магнитного потока по отношению
к проницаемости вакуума (μ0)
Магнитный потокФВбЭквивалент тока в электричестве
Остаточная намагниченностьВТл«Сила» постоянного магнита
Магнитная индукция,
плотность потока
ВТлВ = Ф/А
(поток на единицу площади)

В вакууме или воздухе индукция (В) пропорциональна напряженности поля:

Внутри магнитных материалов индукция зависит от их относительной магнитной проницаемости и напряженности поля:

В этом уравнении μr сильно нелинейна и зависит от напряженности поля Н, материала, температуры и других факторов. Для типичных материалов, применяемых для магнитного экранирования, значение μr может достигать 80 000 при сохранении линейности. При высоких значениях напряженности поля μr снижается, и дальнейшее увеличение напряженности не сопровождается ростом индукции В, что и называется явлением насыщения.

Постоянные магниты обычно характеризуются размерами, остаточной намагниченностью, коэрцитивной силой и проницаемостью возврата.

В таблице 3 приведены некоторые параметры типичного редкоземельного магнита небольшого размера.

Таблица 3. Параметры небольшого редкоземельного магнита

ПараметрЗначениеОписание
Размеры, мм40×18×12Геометрические размеры
Остаточная намагниченность, Тл1,35
Коэрцитивная сила, А/м1×10 6
Проницаемость возврата1,05Сравнима с проницаемостью свободного пространства

Магнитные свойства типовых измерительных систем на основе 71M6541/71M6542/71M6543

Корпус счетчика

Счетчики электроэнергии обычно имеют пластмассовые корпуса, через которые легко проникают магнитные поля. Поэтому на практике при анализе магнитных явлений такие счетчики следует рассматривать как вообще бескорпусные.

В правильно сконструированном счетчике чувствительные импульсные трансформаторы должны располагаться как можно дальше от стенок корпуса.

Импульсные трансформаторы

Для стандартных задач, то есть в условиях слабых магнитных полей, компания Maxim рекомендует применять импульсные трансформаторы с ферритовыми сердечниками совместно с измерительными микросхемами для электросчетчиков 71M6541/71M6542/71M6543 и изолированными АЦП 71M6601/71M6103/71M6113. Характеристики этих трансформаторов приведены в таблице 4. Для уточнения данных о производителях и их номенклатуре следует обращаться к дистрибьюторам компании Maxim.

Можно выполнить некоторые основные расчеты для типичного импульсного трансформатора с ферритовым сердечником, описанным в таблице 4. Магнитная индукция такого трансформатора при насыщении равна 470 мТл. Ток через первичную обмотку будет создавать магнитную индукцию, которая должна быть намного меньше индукции насыщения, так чтобы некоторая дополнительная индукция, создаваемая внешним магнитным полем, не приводила к насыщению сердечника.

Таблица 4. Магнитные свойства типового импульсного трансформатора

ПараметрЗначениеКомментарии
Тип сердечникаТороид
Размер сердечника (OD), мм4,8Внешний диаметр
Размер сердечника (ID), мм2,3Толщина тороида — 1,27 мм
Начальная проницаемость2700При нулевой магнитной индукции
и комнатной температуре
Максимальная проницаемость4400При магнитной индукции 200 мТл
и комнатной температуре
Магнитная индукция при
насыщении, мТл
470При комнатной температуре

Для определения индукции, связанной с прохождением цифровых сигналов, сначала рассчитаем напряженность поля, которая для тороидального сердечника описывается формулой:

где N — число витков в первичной обмотке; I — ток, создаваемый драйверами 71M6541/ 71M6542/71M6543/71M6545; r — радиус тора.

Подставляя значения I = 12 мА, N = 13 и r = 0,0024 м, получим значение Н — 10,35 А/м.

Для определения величины магнитной индукции, создаваемой этой напряженностью поля, можно применить кривую намагничивания (для феррита данного типа), приведенную на рис. 1. Индукция, соответствующая напряженности 10,35 А/м, равна 170 мТл, что означает теоретический запас по индукции 470–170 = 300 мТл для полей, создаваемых внешними магнитами до наступления насыщения.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 1. Кривая намагничивания сердечника

Другие магнитные компоненты

При разработке «магнитоустойчивых» счетчиков мы не должны упускать из виду тот факт, что в состав этих приборов могут входить некоторые другие компоненты, подверженные влиянию магнитных полей. Примерами таких компонентов являются:

Методы борьбы с несанкционированным искажением показаний с использованием магнитов

Для разработчиков счетчиков доступны различные способы борьбы с магнитными помехами. Перечисленные ниже методы приведены в порядке изменения их себестоимости и эффективности:

Регистрация событий

Для обнаружения внешних магнитов можно использовать разнообразные способы. При производстве приборов учета применяют следующие методы защиты:

Программное обеспечение демонстрационных плат 71M6543F-DB и 71M6541F-DB позволяет обнаруживать провалы напряжения питания, связанные с насыщением трансформаторов, и регистрировать попытки несанкционированного искажения показаний. Код помогает различать естественные потери мощности и потери, обусловленные воздействием искусственно созданного магнитного поля, по следующим критериям:

Размещение компонентов, чувствительных к магнитным полям

При испытаниях методом приближения магнита, для случаев с наиболее жестким магнитным воздействием, следует учитывать расположение магниточувствительных компонентов, таких как трансформаторы и дроссели источников питания, а также импульсных трансформаторов, которые должны располагаться как можно дальше от доступных поверхностей корпуса счетчика.

Другим важным моментом является ориентация трансформаторов. Тороидальный трансформатор более подвержен воздействию магнитных полей, если к магниту обращена одна из плоских поверхностей его сердечника. На рис. 2 показаны две различные ориентации сердечника. Вариант расположения слева менее подвержен воздействию магнитного поля от магнита, изображенного вверху.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 2. Ориентация ферритового сердечника трансформатора:
а) вертикальная; б) горизонтальная

Экранирование

Если требования к счетчикам не ограничены регистрацией событий, а возможности удаления импульсных трансформаторов подальше от стенок корпуса ограничены, то для уменьшения воздействия внешнего магнитного поля можно использовать экранирование. Для экономии экранирующего материала следует установить все трансформаторы в одном компактном месте на плате, которое затем и будет защищено экраном.

Идея магнитного экранирования состоит в том, что при заданной напряженности поля его индукция будет максимальна в материале с более высокой проницаемостью. Экранирующий материал будет «впитывать» магнитное поле (как губка впитывает воду), отводя его от чувствительных компонентов. Однако при достижении определенного уровня напряженности поля экран может насытиться и не сможет сохранить пропорциональность магнитной индукции напряженности поля. Важно знать проницаемость и другие магнитные свойства экранируемых компонентов. Так же как и материал, используемый для экранирования, эти компоненты будут концентрировать в себе силовые линии магнитного поля, потому что проницаемость их сердечников обычно намного выше, чем проницаемость воздуха.

Слабые магнитные поля могут быть эффективно экранированы мю-металлом, сплавом с высокой относительной проницаемостью (обычно от 70000 до 80000). Многие производители выпускают такие материалы в виде фольги или фольги с адгезивным слоем. Эти типы фольги легко режутся и изгибаются для получения требуемой формы экрана при лабораторных испытаниях. После того как будет экспериментально определена оптимальная конструкция экрана, можно использовать штампование для формовки экрана в виде короба или крышки.

При экспериментах с магнитными экранами полезно соблюдать некоторые указания, а именно:

Эффективность экранирования ограничена, особенно при воздействии сильных магнитов. На практике экранирующие материалы с высокой проницаемостью имеют свойство насыщаться раньше и по этой причине терять свои экранирующие свойства. Для экранирования от сильных магнитных полей следует рассматривать малоуглеродистую (мягкую) сталь или другие материалы. Однако эффективное экранирование возможно только при использовании большого объема экранирующего материала, что делает счетчик тяжелым и дорогим.

Использование альтернативных материалов для сердечников

Ферритовые сердечники стандартных импульсных трансформаторов насыщаются при 450–500 мТл. Такие трансформаторы являются хорошим выбором при работе в слабых внешних магнитных полях, когда есть возможность использовать регистрацию событий или размещение счетчика и (или) его экранирование обеспечивает хороший результат.

Но не всем сценариям внешних магнитных воздействий способны противостоять подобные трансформаторы. Иногда против огромных и мощных магнитов единственно эффективным средством противодействия является трансформатор с сердечником с большой индукцией насыщения. Компания Maxim сотрудничает с производителями трансформаторов для поиска наиболее подходящих материалов для сердечников, обеспечивающих хорошее сочетание электрических и магнитных свойств, а также себестоимости.

В результате интенсивных исследований были отобраны два материала для сердечников — MPP и Hi-Flux.

Для уточнения данных о производителях и их номенклатуре следует обращаться к дистрибьюторам компании Maxim.

Некоторые результаты испытаний представлены в разделе «Испытания альтернативных материалов».

Моделирование экранов

Моделирование экранов выполнялось с помощью симулятора магнитных взаимодействий Vizimag 2-D. При этом использовались модели экранирующих пластин толщиной 1 мм с проницаемостью 80000.

Без экранирования

Без экранирования силовые линии магнитного поля пронизывали печатную плату, как воздух, и создавали магнитную индукцию 92 мТл в центре и 75 мТл на расстоянии 15 мм (рис. 3).

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 3. Магнитное поле без экранирования

Важно отметить, что приведенные результаты (92 или 75 мТл) не будут повторены при наличии в данном магнитном поле сердечника трансформатора. Ферритовый сердечник, обладая сравнительно высокой проницаемостью, будет «всасывать» в себя линии магнитного поля. Это приведет к созданию в нем намного большей индукции, чем значения, полученные при моделировании на воздухе.

Плоский экран

Плоский экран снижает индукцию незначительно. Введение экрана шириной 40 мм с проницаемостью 80000 и толщиной 1 мм уменьшает индукцию до 40 мТл в центре и до 57 мТл на расстоянии 15 мм от центра. Эффект экранирования можно оценить по расстоянию между силовыми линиями (рис. 4), которое примерно в два раза больше, чем у модели, представленной на рис. 3.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 4. Магнитное поле с плоским экраном

Перемещение экрана вверх или вниз не изменяет существенно индукцию на поверхности печатной платы. Интересно, что толщина экрана оказывает минимальное влияние на индукцию.

Экран П-образной формы

Загибание краев экрана вниз для придания ему П-образной формы (рис. 5) уменьшает индукцию до 25 мТл в центре и до 29 мТл на расстоянии 15 мм от центра. Силовые линии стремятся двигаться по мю-металлу и проникают в печатную плату только в двух местах.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 5. Магнитное поле с П-образным экраном

Дальнейшее усовершенствование возможно за счет удлинения стенок экрана. На рис. 6 показано распределение силовых линий магнитного поля при использовании П-образного экрана со стенками длиной 12 мм. Силовые линии стремятся избежать попадания в полость под экраном и покидают мю-металл на самых краях стенок экрана. Этот прием позволяет уменьшить индукцию до 15 мТл в центре и до 12 мТл в 15 мм от центра печатной платы. По сравнению с вариантом без экрана в данном случае достигнуто шестикратное уменьшение индукции.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 6. Магнитное поле с экраном с удлиненными боковыми стенками

Отметим, что при указанном варианте экран вставляется в печатную плату, а значит, в нем нужно делать пазы.

После того как было достигнуто значительное уменьшение индукции в сердечниках за счет экранирования, результаты были проверены путем введения в модель тороидальных трансформаторных сердечников с физическими характеристиками, приведенными выше (рис. 7).

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 7. Магнитное поле с экраном с удлиненными боковыми стенками и трансформаторными сердечниками

Результаты моделирования демонстрируют, что максимальная индукция в сердечниках достигает 2 мТл, и это намного ниже порога насыщения. Для сравнения, индукция в сердечниках без экрана достигает 200 мТл, что близко к максимальному значению согласно установленному ранее допуску (рис. 8).

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 8. Магнитное поле без экрана с трансформаторными сердечниками

Замкнутый экран

Достигнуть лучших результатов можно при экранировании со всех сторон защищаемого узла. Из-за проблем конструирования и обеспечения электрической изоляции это может оказаться непрактичным, но в исключительных случаях может быть единственным методом. Двухмерное моделирование показывает величину индукции 1,6 мТл в сердечниках, размещенных внутри замкнутого экрана (рис. 9).

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 9. Магнитное поле с экраном с сердечниками, помещенными в замкнутый экрани

Ограничения при моделировании

Простые программы моделирования, примененные для получения представленных выше результатов, имеют ограничения, а именно:

Эти обстоятельства не позволяют точно на основе моделирования предсказать поведение экранов в реальных условиях. В случае если необходима более высокая точность модели, необходимо применять программы трехмерного моделирования.

Кроме того, экранирование осложняется следующими обстоятельствами:

В реальных условиях разработчик будет стремиться размещать металлические конструкции подальше от импульсных трансформаторов. Это ограничивает применимость экранов теми областями, что находятся вдали от импульсных трансформаторов. Тот факт, что трансформаторы лучше работают, когда размещены внутри трехмерной экранирующей конструкции, также означает, что на физические конструкции наложены ограничения: они не могут пересекать печатные платы.

Испытания экранов

Испытания экрана счетчика EHz

Испытания были проведены с типом корпуса, весьма схожим с корпусом одной из моделей счетчика серии EHz (Германия).

Этот корпус имеет длину 135 мм, ширину 90 мм и высоту 80 мм. Подобные малые размеры усложняли задачу проектирования для разработчиков, так как магнитные компоненты нельзя было разместить далее чем в 45 мм от наружных стенок корпуса (рис. 10).

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 10. Размеры корпуса счетчика EHz с местом расположения трансформаторов

При испытаниях использовался стандартный магнит PTB, указанный в спецификации на счетчик EHz: согласно техническим условиям FNN Lastenheft EDL магнитная индукция на доступной поверхности корпуса счетчика, когда он установлен в рабочее положение, должна составлять 380 мТл. Рекомендуемый метод испытаний предусматривает использование магнита из материала Nd2Fe14B 280/167 согласно стандарту IEC 60404-8-1 с остаточной намагниченностью 1200 мТл (при размерах 75×50×25 мм), который прикладывается «широкой стороной», то есть площадкой 75×50 мм, непосредственно к корпусу счетчика.

На рис. 11 показан наихудший сценарий, при котором магнит приложен к корпусу счетчика сбоку.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 11. Размеры корпуса счетчика EHz с местом расположения трансформаторов

После установки на четырех сторонах корпуса листов стали толщиной 0,75 мм (рис. 12а) трансформаторы можно было разместить в узкой зеленой области по продольной оси корпуса (если смотреть на корпус сверху). Трансформаторы при этом «спрятаны» на глубину более 48 мм от верхней стенки корпуса для исключения магнитного взаимодействия.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 12. Корпус EHz:
а) с однослойной экранировкой; б) с двухслойной экранировкой

При использовании двухслойного экранирования с толщиной экранирующих слоев 0,75 мм, разделенных между собой пластиковой пленкой толщиной 0,2 мм изнутри корпуса (рис. 12б), трансформаторы можно было разместить на большой зеленой площадке (если смотреть на корпус сверху). И в этом случае трансформаторы «спрятаны» на глубину свыше 48 мм от верхней стенки корпуса. Двойное экранирование увеличивает вес счетчика, но цена используемых материалов остается умеренной. Однако возможности размещения трансформаторов ограничены, что не позволяет разработчику быть полностью свободным в выборе места для них.

Испытания альтернативных материалов

Были испытаны образцы трансформаторов с сердечниками на основе MPP, Hi-Flux и Sendust, предоставленные изготовителями магнитных материалов, которые сотрудничают с компанией Maxim. Предварительные испытания показали, что допустимое расстояние до магнита PTB может быть уменьшено на 50% по сравнению с расстоянием для стандартных ферритовых сердечников.

Трансформаторы с сердечниками из трех разных материалов были закреплены на демонстрационной плате 71M6543F-DB и подвергнуты воздействию магнита PTB. При испытаниях расстояние от трансформаторов, на котором был установлен магнит, изменяли (рис. 13). Магнит также перемещали по вертикали (от 0 до 10 мм). Испытания проводились при различных значениях тока нагрузки и дистанции.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 13. Испытание счетчика с внешним магнитом PTB

Результаты оказались хорошими для сердечников из материалов Hi-Flux и MPP, даже когда испытательный магнит располагался на расстоянии всего 17 мм от трансформаторов (рис. 14). Для сравнения, обычный ферритовый трансформатор насыщался, когда магнит PTB находился на расстоянии 40 мм от него.

Что означает мтл в намагничивании. Смотреть фото Что означает мтл в намагничивании. Смотреть картинку Что означает мтл в намагничивании. Картинка про Что означает мтл в намагничивании. Фото Что означает мтл в намагничивании

Рисунок 14. Зависимость погрешности измерений от расстояния до магнита PTB и тока нагрузки:
а) с сердечником MPP; б) с сердечником Hi-Flux

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *