Что образует клеточную стенку

Клеточная стенка

В отличие от животных и многих простейших, у растений, бактерий и грибов, почти все клетки имеют стенку, лежащую кнаружи от цитоплазматической мембраны и обладающую повышенной прочностью. Основная функция данной структуры — опора и защита.

Клеточные стенки (или клеточные оболочки) строятся из веществ, синтезируемых самими клетками. Их химический состав различен у растений, грибов и прокариот. Кроме того, даже у одного растения у различных клеток состав стенок несколько различен.

Клеточная стенка растений состоит в основном из целлюлозы. Целлюлоза — это полисахарид, мономером которого является глюкоза.

Основу бактериальных клеточных стенок составляет вещество муреин (относится к пептидогликанам). У грамположительных бактерий в состав оболочки входят различные кислоты, а сама оболочка плотно прилегает к цитоплазматической мембране. У грамотрицательных бактерий оболочка более тонкая и не прилегает к мембране. Между мембраной и оболочкой образуется периплазматическое пространство. Снаружи клеточная оболочка грамотрицательных прокариот окружена внешней мембраной, составленной из липополисахарида.

У грибов основным веществом клеточных стенок является хитин, а не целлюлоза.

Состав клеточной стенки растений

У растений стенка дочерних клеток образуется уже во время деления родительской. Впоследствии она называется первичной. У многих клеток позже образуется вторичная оболочка.

Первичная клеточная оболочка состоит из микрофибрилл целлюлозы, погруженных в матрикс из других полисахаридов. Отличительной особенностью волокон целлюлозы является их прочность. Молекула целлюлозы представляет собой длинную полисахаридную цепь. Отдельные молекулы соединяются друг с другом водородными связями в пучок, который называется микрофибриллой. Такие фибриллы образуют каркас клеточной стенки.

Матрикс клеточной стенки составляют полисахариды пектины и гемицеллюлозы, а также ряд других веществ (например, белков). Пектиновые вещества представляют собой группу кислых полисахаридов, их молекулы могут быть не только линейными, но и разветвленными. Гемицеллюлозы также смешанная группа полисахаридов. Длина их линейных молекул короче, чем у целлюлозы.

Оболочки соседних клеток растений соединены между собой срединной пластинкой, состоящих из пектатов магния и кальция, для которых характерна клейкость.

В состав стенок растений входит вода (составляет более половины массы), обуславливая ряд физических и химических свойств полисахаридов.

Жесткий каркас растения во многих местах пронизан каналами (плазмодесмами), по которым цитоплазма одной клетки соединяется с цитоплазмой соседних.

Клетки мезофилла листа (а также некоторые другие) на протяжении всей своей жизни имеют только первичную стенку. У большинства же клеток на первичную оболочку с внутренней стороны отлагается вторичная стенка, составленная из дополнительных слоев целлюлозы. Обычно в это время клетка уже дифференцирована и не растет (исключение составляют, например, клетки колленхимы).

В каждом отдельном слое вторичного утолщения микрофибриллы целлюлозы располагаются под одним углом (параллельно друг другу). Однако разные слои имеют разный угол, что обеспечивает большую прочность.

Часть клеток растений одревесневают (трахеальные элементы ксилемы, склеренхима и др.). В основе этого процесса лежит интенсивная лигнификация стенок (в небольших количествах лигнин есть во всех оболочках). Лигнин не является полисахаридом, а представляет собой сложное полимерное вещество. Отложения лигнина могут иметь различную форму (сплошную, кольцевую, спиральную, сетчатую). Он скрепляет целлюлозу, не дает ей смещаться. Лигнин не только обеспечивает прочность, но и дает дополнительную защиту от неблагоприятных физических и химических факторов.

Функции клеточной стенки

Оболочки разных клеток совместно обеспечивают всему растению и его отдельным частям механическую прочность и опору. Это функция клеточной стенки аналогична одной из функций скелета животных. Однако она не единственная.

Жесткость стенок препятствует растяжению клеток и их разрыву. В результате по физическим законам в клетки может путем осмоса поступать вода. Для травянистых растений тургоцентричность клеток является единственной их опорой.

Микрофибриллы целлюлозы ограничивают рост клеток и определяют их форму. Если микрофибриллы окольцовывают клетку, то она будет расти в длину (поперек направления волокон).

Связанные клеточные стенки образуют апопласт, по которому передвигается вода и минеральные вещества. Плазмодесмы связывают содержимое разных клеток в единую систему — симпласт.

Стенки сосудов ксилемы, трахеид, ситовидных трубок выполняют транспортную функцию.

Наружные клеточные стенки эпидермальных клеток покрыты воском (кутикулой). С одной стороны, он препятствует испарению воды, с другой – проникновению вредных микроорганизмов.

У некоторых растений в определенных клетках оболочки видоизменяются и служат местом запаса питательных веществ.

Источник

Жесткий слой, окружающий клетки бактерий, архей, грибов ирастений, называется клеточной стенкой. Стенка находится вне пределов цитоплазмической мембраны (клеточной мембраны) ивыполняет целый ряд функций. Уживотных ибольшинства простейших клеточной стенки ненаблюдается.

Вданной статье охарактеризована клеточная стенка (строение ифункции), кратко для каждого вида клеток.

Клеточные стенки высших растений

Растительная клеточная оболочка, строение ифункции которой здесь рассматриваются, имеет многослойную структуру.

Что образует клеточную стенку. Смотреть фото Что образует клеточную стенку. Смотреть картинку Что образует клеточную стенку. Картинка про Что образует клеточную стенку. Фото Что образует клеточную стенку

Это внешний слой (средняя пластинка), первичная клеточная стенка ивторичная клеточная стенка. Вторичная клеточная стенка имеется неувсех растений.

Что образует клеточную стенку. Смотреть фото Что образует клеточную стенку. Смотреть картинку Что образует клеточную стенку. Картинка про Что образует клеточную стенку. Фото Что образует клеточную стенку

Основная функция клеточной стенки состоит вформировании каркаса клетки ипредотвращении еерасширения. Кроме того, клеточная стенка:

Клеточные стенки водорослей

Как иклетки высших растений, клетки водорослей имеют соответствующие стенки. Они содержат целлюлозу идругие гликопротеины.

Что образует клеточную стенку. Смотреть фото Что образует клеточную стенку. Смотреть картинку Что образует клеточную стенку. Картинка про Что образует клеточную стенку. Фото Что образует клеточную стенку

Вклеточных стенках зеленых инекоторых видов красных водорослей встречаются манозиловые микроволокна. Авклеточных стенках бурых водорослей встречается альгиновая кислота.

Агарозы, карагинан, порфиран, фурселеран ифуноран встречаются практически вовсех видах водорослей. Группа диатомовых водорослей синтезирует свою клеточную стенку изкремнезема, что вкакой-то мере способствует быстрому росту водорослей.

Клеточные стенки грибов

Что образует клеточную стенку. Смотреть фото Что образует клеточную стенку. Смотреть картинку Что образует клеточную стенку. Картинка про Что образует клеточную стенку. Фото Что образует клеточную стенку

Грибная клеточная стенка меняет свой состав, свойства иформу помере роста гриба.

Клеточные стенки бактерий

Бактериальные клеточные стенки, как иурастений, впервую очередь защищают ячейку отвнутреннего тургора. Упрокариот клеточная стенка отличается составом основного компонента— онсостоит изпептидогликана, размещающегося сразу зацитоплазматической мембраной.

Что образует клеточную стенку. Смотреть фото Что образует клеточную стенку. Смотреть картинку Что образует клеточную стенку. Картинка про Что образует клеточную стенку. Фото Что образует клеточную стенку

Различают два вида бактериальных клеточных стенок, поэтому признаку бактерии делятся награмотрицательные играмположительные.

Вграмположительных бактериях клеточная стенка имеет толстый слой пептидогликана. Такая стенка имеется уопределенного типа организмов, вклетках которых формируется липотейхоевая кислота, благодаря наличию фосфодиестерных связей между мономерами которой клетка получает отрицательный электрический заряд.

Соответственно грамотрицательные бактерии имеют очень тонкий слой пептидогликана клеточной стенки иимеют вторую, внешнюю, мембрану, находящуюся снаружи отклеточной стенки икомпонующую фосфолипиды илипополисахариды насвоей внешней стороне.

Уважаемые читатели, хотелосьбы знать былали вам полезна информация, описывающая строение ифункции клеточной оболочки, кратко, ноемко характеризующая разные виды клеток.

Источник

Клеточная стенка

Что такое клеточная стенка?

За очень немногими исключениями, все клетки окружены внеклеточным матриксом, состоящим из белков, углеводов и других веществ. Благодаря своей исключительной силе и способности контролировать форму клеток, внеклеточный матрикс эубактерий, водорослей, грибов и растений называется клеточной стенкой.

Клеточная стенка представляет собой дополнительный слой защиты поверх клеточной мембраны. Вы можете найти клеточные стенки как у прокариот, так и у эукариот, и они наиболее распространены у растений, водорослей, грибов и бактерий.

Зачем нужна клеточная стенка?

Клеточная стенка выполняет несколько функций, включая поддержание структуры и формы клетки. Стена жесткая, поэтому она защищает клетку и ее содержимое.

Что образует клеточную стенку. Смотреть фото Что образует клеточную стенку. Смотреть картинку Что образует клеточную стенку. Картинка про Что образует клеточную стенку. Фото Что образует клеточную стенку

Она также играет важную роль в транспорте. Поскольку стенка представляет собой полупроницаемую мембрану, она позволяет проходить определенным веществам, таким как белки. Это позволяет стене регулировать диффузию в клетке и контролировать, что входит или выходит.

Кроме того, полупроницаемая мембрана помогает связи между клетками, позволяя сигнальным молекулам проходить через поры.

Из чего состоит клеточная стенка?

Клеточная стенка растения состоит в основном из углеводов, таких как пектины, целлюлоза и гемицеллюлоза. Она также содержит структурные белки в меньших количествах и некоторые минералы, такие как кремний. Все эти компоненты являются жизненно важными частями клеточной стенки.

Целлюлоза представляет собой сложный углевод и состоит из тысяч мономеров глюкозы, которые образуют длинные цепи. Эти цепи собираются вместе и образуют целлюлозные микрофибриллы диаметром несколько нанометров. Микрофибриллы помогают контролировать рост клетки, ограничивая или допуская ее расширение.

Тургорное давление клетки

Одна из главных причин наличия стенки в растительной клетке заключается в том, что она может противостоять тургорному давлению, и именно здесь целлюлоза играет решающую роль. Тургорское давление — это сила, создаваемая выталкивающей внутренней частью ячейки. Микрофибриллы целлюлозы образуют матрицу с белками, гемицеллюлозами и пектинами, чтобы обеспечить прочную основу, которая может противостоять тургорному давлению.

И гемицеллюлозы, и пектины являются разветвленными полисахаридами. Гемицеллюлозы имеют водородные связи, соединяющие их с микрофибриллами целлюлозы, в то время как пектины удерживают молекулы воды, образуя гель. Гемицеллюлозы увеличивают прочность матрицы, а пектины помогают предотвратить сжатие.

Белки в клеточной стенке

Белки в клеточной стенке выполняют разные функции. Некоторые из них обеспечивают структурную поддержку. Другие ферменты, которые являются типом белка, который может ускорить химические реакции.

Эти ферменты помогают формированию и нормальных изменений, которые происходят для поддержания клеточной стенки завода. Они также играют роль в созревании плодов и изменении цвета листьев.

Вещества клеточной стенки

Целлюлоза и хитин являются полисахаридами, то есть они состоят из множества связанных молекул сахара. Целлюлоза представляет собой полимер из глюкозы, который содержит только углерод, водород и кислород, в то время как хитин представляет собой полимер из N-ацетилглюкозамина, сахар, который содержит азот также. Как целлюлоза, так и хитин являются линейными неразветвленными полимерами соответствующих сахаров, и несколько десятков этих полимеров собраны в большие кристаллоподобные кабели, называемые микрофибриллами, которые наматываются на клетки.

Целлюлоза клеточной стенки

Кажется, что каждая розетка способна «закрутить» микрофибриллу в клеточную стенку. Во время этого процесса, когда новые субъединицы глюкозы добавляются к растущему концу фибрилл, розетка проталкивается вокруг клетки на поверхности клеточной мембраны, и ее целлюлозная фибрилла оборачивается вокруг протопласта. Таким образом, каждая растительная клетка может рассматриваться как составляющая свой собственный целлюлозно-фибрильный кокон.

Целлюлоза состоит из молекул глюкозы, соединенных между собой.

В отличие от других компонентов клеточной стенки, которые синтезируются в организме Гольджи (органелле, которая производит, сортирует и транспортирует различные макромолекулы внутри клетки), целлюлоза синтезируется на поверхности клетки растения. В плазматическую мембрану растения встроен фермент, называемый синтетазой целлюлозы, который синтезирует целлюлозу.

Когда целлюлоза синтезируется, она самопроизвольно образует микрофибриллы, которые осаждаются на поверхности клетки. Поскольку фермент синтетазы целлюлозы находится в плазматической мембране, новые целлюлозные микрофибриллы откладываются под более старые целлюлозные микрофибриллы. Таким образом, самые старые целлюлозные микрофибриллы находятся на внешней стороне стенки, в то время как более новые микрофибриллы находятся на внутренней стороне стенки.

Функции клеточной стенки

Клеточные стенки обеспечивают жесткость и защиту. Для многоклеточных организмов клеточная стенка также связывает разные клетки вместе. Растения используют клеточную стенку как часть своей системы для поддержания формы и жесткости.

Что образует клеточную стенку. Смотреть фото Что образует клеточную стенку. Смотреть картинку Что образует клеточную стенку. Картинка про Что образует клеточную стенку. Фото Что образует клеточную стенку

Она придает растению актуальную форму, действует как привратник, потому что она определяет, что может входить и выходить из ячейки, чтобы обеспечить защиту. Это похоже на внешние кирпичи замка, только, в этом замке есть отверстия. Эти отверстия делают клетку уязвимой, но они важны для ее функционирования.

Красное дерево и одуванчик имеют клеточные стенки снаружи всех своих клеток. Клеточные стенки предназначены для того, чтобы дать растениям форму и поддержку; однако клеточные стенки действуют и конструируются немного по-другому, чтобы удовлетворить потребности конкретного растения.

Например, 100-футовому дереву красного дерева нужна очень прочная и жесткая клеточная стенка растения, чтобы оно могло вырасти до своей большой высоты и не упасть на ветру. С другой стороны, маленький желтый одуванчик в поле должен иметь большую пластичность, чтобы он мог сгибаться, а не ломаться, когда ветер дует.

Вы когда-нибудь забывали поливать цветы? Возможно, они не смогут говорить, но они дадут вам знать, когда захотят пить, и начнут опускаться. Их форма по-прежнему поддерживается клеточной стенкой, так что, как только вы поливаете растение, оно может снова подняться. С другой стороны, если вы слишком много дали им воды, клеточная стенка также предотвращает перенасыщение водой, она защищает клетку от чрезмерного расширения.

Клеточная стенка защищает растение и клетки от многих насекомых и патогенных микроорганизмов, которые могут нанести вред растению, но клеточная стенка имеет свои уязвимые участки. По всей клеточной стенке есть отверстия, называемые плазмодесмами. Это отверстия, которые позволяют питательным веществам проникать в клетку, а также отходам, выходящим из клетки. Эти маленькие отверстия могут вызвать потерю клеткой воды, и именно тогда растение начнет опускаться. Но как только растение сможет выпить, оно вернется к своей правильной форме.

Структура растительной клеточной стенки

Стенки растительных клеток представляют собой трехслойные структуры со средней пластинкой, первичной клеточной стенкой и вторичной клеточной стенкой. Средняя пластинка является самым внешним слоем и помогает в межклеточных соединениях, удерживая соседние клетки вместе (другими словами, она располагается между клеточными стенками двух клеток и удерживает их вместе; именно поэтому она называется средней пластинкой, хотя это самый внешний слой).

Средняя пластинка действует как клей или цемент для растительных клеток, потому что она содержит пектины. Во время деления клетки формируется первая средняя пластинка.

Первичная клеточная стенка

Развивается когда клетка растет, поэтому она имеет тенденцию быть тонкой и гибкой. Она образуется между средней пластинкой и плазматической мембраной.

Она состоит из целлюлозных микрофибрилл с гемицеллюлозами и пектинами. Этот слой позволяет клетке расти со временем, но не слишком ограничивает рост клетки.

Вторичная клеточная стенка

Более толстая и более жесткая, поэтому она обеспечивает большую защиту растения. Она существует между первичной стенкой и плазматической мембраной. Часто первичная стенка фактически помогает создать эту вторичную стенку после того, как клетка заканчивает расти.

Вторичные клеточные стенки состоят из целлюлозы, гемицеллюлозы и лигнина. Лигнин является полимером ароматического спирта, который обеспечивает дополнительную поддержку растения. Это помогает защитить растение от нападений насекомых или патогенных микроорганизмов. Лигнин также помогает с водным транспортом в клетках.

Разница между первичными и вторичными клеточными стенками в растениях

Когда вы сравниваете состав и толщину первичных и вторичных клеточных стенок у растений, легко увидеть различия.

Во-первых, первичные стенки содержат одинаковое количество целлюлозы, пектинов и гемицеллюлоз. Однако вторичные стенки не содержат пектина и содержат больше клетчатки. Во-вторых, целлюлозные микрофибриллы в стенках первичных клеток выглядят случайными, но они организованы во вторичные стенки.

Хотя ученые обнаружили много аспектов функционирования клеточных стенок у растений, некоторые области все еще нуждаются в дополнительных исследованиях.

Например, они все еще узнают больше о фактических генах, вовлеченных в биосинтез клеточной стенки. Исследователи считают, что в этом процессе принимают участие около 2000 генов. Другая важная область исследования — как генная регуляция работает в клетках растений и как она влияет на стенку.

Клеточная стенка грибов

Клеточные стенки грибов содержат хитин, который является производным глюкозы, похожим по структуре на целлюлозу. Слои хитина очень жесткие; хитин — это та же молекула, которая содержится в жестких экзоскелетах животных, таких как насекомые и ракообразные.

Что образует клеточную стенку. Смотреть фото Что образует клеточную стенку. Смотреть картинку Что образует клеточную стенку. Картинка про Что образует клеточную стенку. Фото Что образует клеточную стенку

Глюканы, которые являются другими полимерами глюкозы, также обнаруживаются в клеточной стенке гриба вместе с липидами и белками. У грибов есть белки, названные гидрофобинами в их клеточных стенках. Обнаруженные только в грибах, гидрофобины придают клеткам силу, помогают им прилипать к поверхности и помогают контролировать движение воды в клетки. У грибов клеточная стенка является наиболее внешним слоем и окружает клеточную мембрану.

Клеточная стенка бактерий

Бактериальная стенка имеет пептидогликаны.

Пептидогликан или мурейн — это уникальная молекула, которая состоит из сахаров и аминокислот в сетчатом слое и помогает клетке сохранять свою форму и структуру.

Клеточная стенка у бактерий существует вне плазматической мембраны. Стена не только помогает настроить форму ячейки, но также помогает предотвратить разрыв ячейки и разлив всего ее содержимого.

Источник

Особенности, функции и структура клеточной стенки

клеточная стенка Это толстая и устойчивая структура, которая ограничивает определенные типы клеток и окружает плазматическую мембрану. Это не рассматривается как стена, которая избегает контакта с внешней стороной; Это динамичная, сложная структура, которая отвечает за значительное количество физиологических функций в организмах..

Клеточная стенка содержится в растениях, грибах, бактериях и водорослях. Каждая стена имеет структуру и типичный состав группы. Напротив, одной из характеристик клеток животных является отсутствие клеточной стенки. Эта структура в основном отвечает за придание и поддержание формы клеток.

Что образует клеточную стенку. Смотреть фото Что образует клеточную стенку. Смотреть картинку Что образует клеточную стенку. Картинка про Что образует клеточную стенку. Фото Что образует клеточную стенку

Клеточная стенка действует как защитный барьер в ответ на осмотический дисбаланс, который может иметь клеточная среда. Кроме того, он играет роль в общении между клетками.

Общие характеристики

-Клеточная стенка представляет собой толстый, стабильный и динамический барьер, обнаруживаемый у разных групп организмов..

-Наличие этой структуры жизненно важно для жизнеспособности клетки, ее формы и, в случае вредных организмов, участвует в ее патогенности.

-Хотя состав стенки варьируется в зависимости от каждой группы, основная функция заключается в поддержании целостности клетки от осмотических сил, которые могут разрушить клетку.

-В случае многоклеточных организмов, это помогает формированию тканей и участвует в клеточной коммуникации

Клеточная стенка у растений

Структура и состав

Клеточные стенки растительных клеток состоят из полисахаридов и гликопротеинов, организованных в трехмерной матрице.

Наиболее важным компонентом является целлюлоза. Он состоит из повторяющихся звеньев глюкозы, связанных вместе β-1,4 связями. Каждая молекула содержит около 500 молекул глюкозы.

Остальные компоненты включают в себя: гомогалактуронан, рамногалактуронан I и II и полисахариды гемицеллюлозы, такие как ксилоглюканы, глюкоманнаны, ксиланы и другие..

Гемицеллюлоза связана водородными связями с целлюлозой. Эти взаимодействия очень стабильны. Режим взаимодействия не очень хорошо определен для остальных компонентов.

Его можно дифференцировать между первичной и вторичной клеточными стенками. Основное тонкое и несколько податливое. После остановки роста клеток происходит отложение вторичной стенки, которая может изменить свой состав относительно первичной или остаться неизменной и добавить только дополнительные слои.

В некоторых случаях лигнин является компонентом вторичной стенки. Например, деревья показывают значительное количество клетчатки и лигнина.

синтез

Процесс биосинтеза стенки сложен. Он включает в себя около 2000 генов, участвующих в построении структуры.

Целлюлоза синтезируется в плазматической мембране для осаждения непосредственно снаружи. Для его образования требуется несколько ферментативных комплексов.

Остальные компоненты синтезируются в мембранных системах, расположенных внутри клетки (например, аппарат Гольджи) и выводятся с помощью везикул..

функция

Клеточная стенка у растений выполняет функции, аналогичные тем, которые внеклеточный матрикс выполняет в клетках животных, такие как поддержание формы и структуры клеток, соединение тканей и передача сигналов клеткам. Далее мы обсудим наиболее важные функции:

Регулировать тургор

В клетках животных, у которых отсутствует клеточная стенка, внеклеточная среда представляет собой серьезную проблему с точки зрения осмоса..

Когда концентрация среды выше, чем внутри клетки, вода в клетке имеет тенденцию выходить. И наоборот, когда клетка подвергается воздействию гипотонической среды (более высокая концентрация внутри клетки), вода попадает и клетка может взорваться.

В случае растительных клеток растворенные вещества, обнаруженные в клеточной среде, ниже, чем во внутренней части клетки. Однако клетка не взрывается, потому что клеточная стенка нажата. Это явление вызывает появление некоторого механического давления или клеточного тургора.

Тургорное давление, создаваемое клеточной стенкой, помогает сохранить ткани растений жесткими.

Связи между клетками

Растительные клетки могут общаться друг с другом через серию «каналов», называемых плазмодемами. Эти маршруты позволяют соединять цитозоль как клеток, так и обмениваться веществами и частицами..

Эта система позволяет обмен продуктов обмена, белков, нуклеиновых кислот и даже вирусных частиц.

Сигнальные дороги

В этой сложной матрице присутствуют молекулы, полученные из пектина, такие как олигогалактурониды, которые способны запускать сигнальные пути в качестве защитных реакций. Другими словами, они работают как иммунная система у животных.

Хотя клеточная стенка образует барьер против патогенов, она не является полностью непроницаемой. Поэтому, когда стена ослаблена, эти соединения высвобождаются и «предупреждают» растение о нападении..

В ответ происходит высвобождение активных форм кислорода и производятся метаболиты, такие как фитоалексины, которые являются антимикробными веществами..

Клеточная стенка у прокариот

Структура и состав в эубактерии

Клеточная стенка эубактерии имеет две фундаментальные структуры, которые дифференцируются знаменитым окрашиванием по Граму..

Первая группа состоит из грамотрицательных бактерий. У этого типа мембрана двойная. Клеточная стенка тонкая и с обеих сторон окружена внутренней и внешней плазматической мембраной. Классическим примером грамотрицательной бактерии является Кишечная палочка.

В свою очередь, грамположительные бактерии имеют только плазматическую мембрану, а клеточная стенка намного толще. Они обычно богаты тейхоевой кислотой и миколевой кислотой. Примером является патоген Золотистый стафилококк.

Основным компонентом обоих типов стен является пептидогликан, также известный как мурейн. Единицами или мономерами, которые его составляют, являются N-ацетилглюкозамин и N-ацетилмураминовая кислота. Он состоит из линейных цепочек полисахаридов и небольших пептидов. Пептидогликан образует прочные и стабильные структуры.

Некоторые антибиотики, такие как пенициллин и ванкомицин, действуют, предотвращая образование бактериальных связей клеточной стенки. Когда бактерия теряет клеточную стенку, полученная структура называется сферопластом..

Структура и состав в архее

Археи различаются по составу стенки относительно бактерий, главным образом потому, что они не содержат пептидогликана. Некоторые археи имеют слой псевдопептидогликана или псевдомуреина.

Этот полимер имеет толщину 15-20 нм и похож на пептидогликан. Компонентами полимера являются 1-N-ацетилталозаминуроновая кислота, связанная с N-ацетилглюкозамином..

Они содержат ряд редких липидов, таких как изопреновые группы, присоединенные к глицерину, и дополнительный слой гликопротеинов, называемый слоем S. Этот слой часто ассоциируется с плазматической мембраной..

Есть несколько видов архей, таких как Ферроплазма ацидофильная и Thermoplasma spp., которые не имеют клеточной стенки, несмотря на то, что живут в экстремальных условиях окружающей среды.

И эубактерии, и археи представляют большой слой белков, таких как адгезины, которые помогают этим микроорганизмам колонизировать различные среды.

синтез

У грамотрицательных бактерий компоненты стенки синтезируются в цитоплазме или во внутренней мембране. Строительство стены происходит снаружи клетки.

Образование пептидогликана начинается в цитоплазме, где происходит синтез нуклеотидных предшественников компонентов стенки.

Впоследствии синтез продолжается в цитоплазматической мембране, где синтезируются соединения липидной природы..

Процесс синтеза заканчивается внутри цитоплазматической мембраны, где происходит полимеризация пептидогликановых звеньев. Различные ферменты участвуют в этом процессе.

функции

Как и клеточная стенка у растений, эта структура у бактерий выполняет аналогичные функции по защите этих одноклеточных организмов от лизиса перед лицом осмотического стресса..

Внешняя мембрана грамотрицательных бактерий помогает транслокации белков и растворенных веществ и передаче сигнала. Он также защищает организм от патогенов и обеспечивает клеточную стабильность.

Клеточная стенка у грибов

Структура и состав

Большинство клеточных стенок у грибов имеют довольно схожий состав и структуру. Они образуются из гелеобразных углеводных полимеров, перепутанных с белками и другими компонентами..

Отличительным компонентом грибковой стенки является хитин. Он взаимодействует с глюканами, образуя волокнистую матрицу. Хотя это прочная структура, она обладает определенной степенью гибкости.

синтез

Другие компоненты синтезируются в аппарате Гольджи и в эндоплазматической сети. Эти молекулы выводятся в клеточную поверхность путем выделения с помощью везикул..

функции

Клеточная стенка грибов определяет ее морфогенез, жизнеспособность и патогенность. С экологической точки зрения он определяет тип среды, в которой может жить определенный грибок или нет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *