Что показывает тангенциальное ускорение
Нормальное и тангенциальное ускорение
Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.
Если тело движется по криволинейной траектории, то его скорость направлена по касательной к этой траектории.
Так как направление скорости все время меняется, значит, в таком случае криволинейное движение всегда происходит с ускорением, также, если модуль скорости не меняется.
В большинстве случаев ускорение направлено под некоторым углом к скорости. Составляющую ускорения, которая направлена вдоль скорости, называют тангенциальным ускорением . Тангенциальное ускорение описывает степень изменения скорости по модулю:
Нормальное ускорение – это составляющая ускорения, которая направлена к центру кривизны траектории, то есть она является нормалью (направлена перпендикулярно) к скорости. Нормальное ускорение описывает степень изменения скорости по направлению:
Здесь R – это радиус кривизны траектории в заданной точке.
Тангенциальное и нормальное ускорение всегда имеют перпендикулярное направление, откуда получаем модуль полного ускорения:
.
Что такое тангенциальное ускорение? Формулы, пример задачи
Ускорение в физике
Под ускорением понимают быстроту, с которой изменяется скорость тела во время его перемещения. Математически это определение записывают так:
Вам будет интересно: Что такое «шурави»? Происхождение слова
Если говорить об ускорении как о величине динамики, то следует вспомнить закон Ньютона:
Траектория движения и полное ускорение
Предположим, что тело движется по кривой траектории. При этом его скорость изменяется по некоторому закону v = v (t). В любой точке траектории скорость направлена по касательной к ней. Выразить скорость можно как произведение ее модуля v на элементарный вектор u¯. Тогда для ускорения получим:
a¯ = d v¯/ d t = d (v × u¯) / d t
Применяя правило вычисления производной от произведения функций, получаем:
a¯ = d (v × u¯) / d t = d v / d t × u¯ + v × d u¯ / d t
Таким образом, полное ускорение a¯ при движении по кривой траектории раскладывается на две составляющие. В данной статье мы рассмотрим подробно лишь первое слагаемое, которое называется тангенциальным ускорением точки. Что касается второго слагаемого, то лишь скажем, что оно называется нормальным ускорением и направлено к центру кривизны.
Тангенциальное ускорение
Обозначим эту компоненту полного ускорения символом at¯. Запишем еще раз формулу тангенциального ускорения:
О чем говорит это равенство? Во-первых, компонента at¯ характеризует изменение абсолютного значения скорости, не принимая во внимание ее направление. Так, в процессе движения вектор скорости может быть постоянным (прямолинейным) или же постоянно изменяться (криволинейным), но если при этом модуль скорости остается неизменным, то at¯ будет равно нулю.
Во-вторых, тангенциальное ускорение направлено точно так же, как вектор скорости. Этот факт подтверждается наличием в записанной выше формуле множителя в виде элементарного вектора u¯. Так как u¯ направлен по касательной к траектории, то компоненту at¯ часто называют касательным ускорением.
Исходя из определения касательного ускорения, можно сделать вывод: величины a¯ и at¯ совпадают всегда в случае прямолинейного перемещения тел.
Касательное и угловое ускорение при движении по окружности
Выше мы выяснили, что движение по любой криволинейной траектории приводит к появлению двух компонент ускорения. Одним из видов движения по кривой линии является вращение тел и материальных точек по окружности. Такой тип перемещения удобно описывать угловыми характеристиками, такими как угловое ускорение, угловая скорость и угол поворота.
Под угловым ускорением α понимают величину изменения скорости угловой ω:
Угловое ускорение приводит к увеличению частоты вращения. Очевидно, что при этом возрастает линейная скорость каждой точки, которая участвует во вращении. Поэтому должно существовать выражение, которое связывает угловое и тангенциальное ускорение. Не будем вдаваться в подробности вывода этого выражения, а приведем его сразу:
Величины at и α прямо пропорциональны друг другу. Кроме того, at увеличивается с возрастанием дистанции r от оси вращения до рассматриваемой точки. Именно поэтому при вращении удобно использовать α, а не at (α от радиуса вращения r не зависит).
Пример задачи
Известно, что материальная точка вращается вокруг оси радиусом 0,5 метра. Ее угловая скорость при этом изменяется по следующему закону:
Необходимо определить, с каким тангенциальным ускорением точка будет вращаться в момент времени 3,5 секунды.
Для решения данной задачи следует воспользоваться сначала формулой для углового ускорения. Имеем:
α = d ω / d t = 2 × t + 4
Теперь следует применить равенство, которое связывает величины at и α, получаем:
При записи последнего выражения мы подставили значение r = 0,5 м из условия. В итоге мы получили формулу, согласно которой тангенциальное ускорение зависит от времени. Такое движение по окружности не является равноускоренным. Для получения ответа на задачу осталось подставить известный момент времени. Получаем ответ: at = 5,5 м/с2.
Тангенциальное, или касательное ускорение
Все тела, которые окружают нас, находятся в постоянном движении. Перемещение в пространстве тел наблюдается на всех масштабных уровнях, начиная с движения элементарных частиц в атомах вещества и заканчивая ускоренным движением галактик во Вселенной. В любом случае процесс движения происходит с ускорением. В данной статье рассмотрим подробно понятие касательного ускорения и приведем формулу, по которой его можно рассчитать.
Кинематические величины
Прежде чем вести разговор о касательном ускорении, рассмотрим, какими величинами принято характеризовать произвольное механическое перемещение тел в пространстве.
Вам будет интересно: Как научить ребенка делению: основные принципы, простые способы решения и советы учителей
В первую очередь — это путь L. Он показывает, какое расстояние в метрах, сантиметрах, километрах и так далее прошло тело за некоторый промежуток времени.
Вторая важная характеристика в кинематике — это скорость тела. В отличие от пути, она является величиной векторной и направлена вдоль траектории движения тела. Скорость определяет быстроту изменения пространственных координат во времени. Формула для ее вычисления имеет вид:
Вам будет интересно: Как сдать досрочный ЕГЭ?
Наконец, третьей важной характеристикой движения тел является ускорение. Согласно определению в физике, ускорение — это величина, которая определяет изменение скорости от времени. Формулу для него можно записать в виде:
Ускорение, как и скорость, тоже является величиной векторной, однако в отличие от нее оно направлено в сторону изменения скорости. Направление ускорения также совпадает с вектором результирующей силы, оказывающей действие на тело.
Траектория движения и ускорение
Многие задачи в физике рассматривают в рамках прямолинейного движения. В этом случае, как правило, не говорят о касательном ускорении точки, а работают с линейным ускорением. Однако если перемещение тела не является линейным, то полное его ускорение может быть разложено на две составляющие:
В случае линейного движения нормальная составляющая равна нулю, поэтому о векторном разложении ускорения не говорят.
Вам будет интересно: Малоизвестные и интересные факты о золоте
Таким образом, траектория движения во многом определяет характер и составные части полного ускорения. Под траекторией движения понимают воображаемую линию в пространстве, вдоль которой тело перемещается. Любая криволинейная траектория приводит к появлению ненулевых компонент ускорения, отмеченных выше.
Определение тангенциального ускорения
Тангенциальное или, как его еще называют, касательное ускорение — это компонента полного ускорения, которая направлена по касательной к траектории движения. Поскольку вдоль траектории направлена также скорость, то вектор тангенциального ускорения совпадает с вектором скорости.
Получение уравнения касательного ускорения
Предположим, что тело движется по некоторой кривой траектории. Тогда его скорость v¯ в выбранной точке можно представить в следующем виде:
Здесь v — модуль вектора v¯, ut¯ — единичный вектор скорости, направленный по касательной к траектории.
Используя математическое определение ускорения, получаем:
a¯ = dv¯/dt = d(v*ut¯)/dt = dv/dt*ut¯ + v*d(ut¯)/dt
При нахождении производной здесь использовалось свойство произведения двух функций. Мы видим, что полное ускорение a¯ в рассматриваемой точке соответствует сумме двух слагаемых. Они являются касательным и нормальным ускорением точки соответственно.
Скажем пару слов о нормальном ускорении. Оно ответственно за изменение вектора скорости, то есть за изменение направления движения тела вдоль кривой. Если явно вычислить значение второго слагаемого, то получится формула для нормального ускорения:
Нормальное ускорение направлено вдоль нормали, восстановленной в данную точку кривой. В случае движения по окружности нормальное ускорение является центростремительным.
Уравнение касательного ускорения at¯ имеет вид:
Это выражение говорит о том, что тангенциальное ускорение соответствует изменению не направления, а модуля скорости v¯ за момент времени. Поскольку тангенциальное ускорение направлено по касательной к рассматриваемой точки траектории, то оно всегда перпендикулярно нормальной компоненте.
Тангенциальное ускорение и модуль полного ускорения
Выше была представлена вся информация, которая позволяет вычислить полное ускорение через касательное и нормальное. Действительно, так как обе компоненты являются взаимно перпендикулярными, то их вектора образуют катеты прямоугольного треугольника, гипотенузой которого является вектор полного ускорения. Этот факт позволяет записать формулу для модуля полного ускорения в следующем виде:
Угол θ между полным ускорением и тангенциальным можно определить так:
Чем больше тангенциальное ускорение, тем ближе оказываются направления касательного и полного ускорения.
Связь касательного и углового ускорения
Типичной криволинейной траекторией, по которой движутся тела в технике и природе, является окружность. Действительно, перемещение шестерен, лопастей и планет вокруг собственной оси или вокруг своих светил происходит именно по окружности. Движение, соответствующее этой траектории, называется вращением.
Кинематика вращения характеризуется теми же величинами, что кинематика движения по прямой, однако, они имеют угловой характер. Так, для описания вращения используют центральный угол поворота θ, угловые скорость ω и ускорение α. Для этих величин справедливы следующие формулы:
Предположим, что тело совершило один оборот вокруг оси вращения за время t, тогда для скорости угловой можно записать:
Линейная скорость в этом случае будет равна:
Теперь вычислим производную по времени от левой и правой частей равенства, получим:
Таким образом, тангенциальное ускорение и аналогичная угловая величина связаны равенством:
Если предположить, что вращается диск, то тангенциальное ускорение точки при постоянной величине α будет возрастать линейно с увеличением расстояния от этой точки до оси вращения r.
Далее, решим две задачи на применение записанных выше формул.
Определение тангенциального ускорения по известной функции скорости
Известно, что скорость тела, которое перемещается по некоторой кривой траектории, описывается следующей функцией от времени:
Необходимо определить формулу касательного ускорения и найти его значение в момент времени t = 5 секунд.
Сначала запишем формулу для модуля тангенциального ускорения:
То есть для вычисления функции at(t) следует определить производную скорости по времени. Имеем:
at = d(2*t2 + 3*t + 5)/dt = 4*t + 3
Подставляя в полученное выражение время t = 5 секунд, приходим к ответу: at = 23 м/с2.
Задача на определение тангенциального ускорения
Известно, что материальная точка начала равноускоренное вращение с нулевого момента времени. Через 10 секунд после начала вращения ее центростремительное ускорение стало равным 20 м/с2. Необходимо определить касательное ускорение точки через 10 секунд, если известно, что радиус вращения равен 1 метр.
Сначала запишем формулу для центростремительного или нормального ускорения ac:
Пользуясь формулой связи между линейной и угловой скоростью, получим:
При равноускоренном движении скорость с угловым ускорением связаны формулой:
Подставляя ω в равенство для ac, получим:
Линейное ускорение через тангенциальное выражается так:
Подставляем последнее равенство в предпоследнее, получаем:
ac = at2/r2*t2*r = at2/r*t2 =>
Последняя формула с учетом данных из условия задачи приводит к ответу: at = 0,447 м/с2.
Тангенциальное ускорение определяется по формуле
Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.
Если тело движется по криволинейной траектории, то его скорость направлена по касательной к этой траектории.
Так как направление скорости все время меняется, значит, в таком случае криволинейное движение всегда происходит с ускорением, также, если модуль скорости не меняется.
В большинстве случаев ускорение направлено под некоторым углом к скорости. Составляющую ускорения, которая направлена вдоль скорости, называют тангенциальным ускорением . Тангенциальное ускорение описывает степень изменения скорости по модулю:
Нормальное ускорение – это составляющая ускорения, которая направлена к центру кривизны траектории, то есть она является нормалью (направлена перпендикулярно) к скорости. Нормальное ускорение описывает степень изменения скорости по направлению:
Здесь R – это радиус кривизны траектории в заданной точке.
Тангенциальное и нормальное ускорение всегда имеют перпендикулярное направление, откуда получаем модуль полного ускорения:
.
Нормальное, тангенциальное и полное ускорение
Ускорение при криволинейном движении
В случае движения материальной точки по криволинейной траектории различают нормальное и тангенциальное ускорения.
Нормальное (центростремительное) ускорение характеризует изменение скорости по направлению. Оно направлено к центру кривизны траектории.
Модуль нормального ускорения определяют по формуле , где R – радиус кривизны траектории
Тангенциальное (касательное) ускорение характеризует изменение скорости по величине. Оно направлено по касательной к траектории.
Модуль тангенциального ускорения определяют по формуле .
Модуль полного ускорения .
Тело, деформациями которого в данных условиях движения, можно пренебречь называют абсолютно твердым телом.
При вращательном движении радиус-вектор каждой точки поворачивается за одно и то время на один и тот же угол
.
называют углом поворота тела.
Угловой скоростью тела называют величину
.
– аксиальный вектор (направлен вдоль оси вращения в сторону, определяемую правилом правого винта).
Равномерное вращение характеризуется периодом обращения Т.
Периодом обращения называют промежуток времени, за которое тело делает один полный оборот (поворачивается на угол 2π).
Модуль угловой скорости равномерного движения
.
Частотой обращения называют число оборотов точки за единицу времени .
Таким образом,
Угловое ускорение характеризует быстроту изменения угловой скорости (в случае неравномерного вращения)
.
Линейная скорость тела связана с угловой соотношением .
Модуль нормального ускорения
Модуль тангенциального ускорения .
Дата добавления: 2014-11-18 ; Просмотров: 889 ; Нарушение авторских прав? ;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
В кинематике для однозначного определения характеристик движения тела в любой точке траектории необходимо знать его скорость и ускорение. Зависимость от времени этих величин предоставляет всю необходимую информацию для вычисления пройденного телом пути. Рассмотрим подробнее в статье, что такое ускорение тангенциальное и нормальное ускорение.
В физике
Прежде чем рассматривать для механического движения ускорение нормальное и тангенциальное ускорение, познакомимся с самим физическим понятием. Определение ускорения является достаточно простым. В физике под ним понимают характеристику изменения скорости. Последняя является векторной величиной, определяющей быстроту изменения координат движущегося объекта в пространстве. Скорость измеряется в метрах в секунду (расстояние, пройденное за единицу времени). Если ее обозначить символом v¯, тогда математическое определение ускорения a¯ будет выглядеть так:
Это равенство определяет так называемое полное мгновенное ускорение. Мгновенным оно называется потому, что характеризует изменение скорости лишь в данный момент времени.
Если движение является равноускоренным, то есть в течение длительного времени ускорение не меняет своего модуля и направления, тогда можно записать следующую формулу для его определения:
Где Δt>>dt. Величина a¯ здесь называется средним ускорением, которое в общем случае отличается от мгновенного.
Ускорение измеряется в системе СИ в метрах в квадратную секунду (м/с 2 ).
Траектория движения и компоненты полного ускорения
Чаще всего тела в природе движутся по кривым траекториям. Примерами такого перемещения являются: вращение по своим орбитам планет, параболическое падение камня на землю, поворот автомобиля. В случае криволинейной траектории в любой момент времени скорость направлена по касательной к рассматриваемой точке траектории. Как при этом направлено ускорение?
Чтобы ответить на поставленный выше вопрос, запишем скорость тела в следующей форме:
Здесь ut¯ – вектор скорости единичный, индекс t означает, что он направлен по касательной к траектории (тангенциальная компонента). Символом v обозначен модуль скорости v¯.
Теперь, следуя определению ускорения, можно провести дифференцирование скорости по времени, имеем:
Таким образом, полное ускорение a¯ представляет собой векторную сумму двух компонент. Первое и второе слагаемое называются нормальным и тангенциальным ускорением точки. Подробнее рассмотрим каждую из этих компонент.
Ускорение тангенциальное
Запишем еще раз формулу для этой компоненты полного ускорения:
Это выражение позволяет описать свойства величины at¯:
Эти свойства позволяют сделать важный вывод: для прямолинейного движения полное и тангенциальное ускорения – это одна и та же величина. В случае криволинейного перемещения полное ускорение всегда больше по модулю, чем тангенциальное. Когда рассматривают физические задачи на прямолинейное равноускоренное движение, то ведут речь именно об этой компоненте ускорения.
Ускорение нормальное
Рассматривая тему скорости, ускорения тангенциального и ускорения нормального, дадим характеристику последней величине. Запишем формулу для нее:
Чтобы записать явно правую часть равенства, воспользуемся следующими соотношениями:
Здесь dL – это пройденный телом путь за промежуток времени dt, r – радиус кривизны траектории. Первое выражение соответствует определению скорости, второе равенство следует из геометрических соображений. Пользуясь этими формулами, получаем конечное выражение для нормального ускорения:
То есть величина an¯ не зависит от изменения скорости, как тангенциальная компонента, а определяется исключительно ее модулем. Нормальное ускорение вдоль нормали к данному участку траектории направлено, то есть к центру кривизны. Например, во время движения по окружности вектор an¯ направлен к ее центру, поэтому нормальное ускорение называют часто центростремительным.
Если за изменение абсолютной величины скорости ответственно ускорение тангенциальное, то нормальная компонента ответственна за изменение вектора скорости, то есть она определяет траекторию перемещения тела.
Ускорение полное, нормальное и тангенциальное
Разобравшись с понятием ускорения и с его компонентами, приведем теперь формулу, которая позволяет определить полное ускорение. Поскольку рассмотренные компоненты направлены под углом 90 o друг к другу, то для определения абсолютной величины их векторной суммы можно использовать теорему Пифагора. Формула для полного ускорения имеет вид:
Направление величины a¯ можно определить по отношению к вектору любой из компонент. Например, угол между a¯ и an¯ вычисляется так:
Учитывая приведенную выше формулу для модуля a¯, можно сделать вывод: при равномерном движении по окружности полное ускорение совпадает с центростремительным.
Решение задачи
Пусть тело движется по окружности радиусом 1 метр. Известно, что его скорость изменяется по следующему закону:
Необходимо определить ускорение тангенциальное и нормальное ускорение в момент t = 4 секунды.
Для тангенциального имеем:
Для того чтобы найти модуль ускорения нормального, сначала следует вычислить значение скорости в заданный момент времени. Имеем:
Теперь можно воспользоваться формулой для an:
Таким образом, мы определили все величины, которые требовалось найти для решения задачи.